Both men and women with Alzheimer’s Disease were found to have an increased concentration of SHBG and decreased free androgen index when compared with controls (Paoletti et al 2004). In a prospective study of 574 men whose baseline age span was 32–87 years and who were followed for a mean of 19.1 years (range, 4–37), the risk of developing Alzheimers’ Disease decreased 26 percent for each 10 unit increase in free testosterone index. The authors concluded that testosterone may be important for the prevention and treatment of AD (Moffat et al 2004).
12)  Use Aswaghanda and Collagen Protein:  This adaptogenic herb has been shown to reduce stress hormone, increase DHEA and boost testosterone levels.  You can take the Cortisol Defense to help you get restorative sleep at night which will support your testosterone.  In addition, I personally enjoy using the Organic Bone Broth Collagen in addition to the Amino Strong for a post weight training shake.  This protein powder has all the benefits of collagen protein and it has 500 mg of high potency ashwagandha in each serving!

Testosterone boosters are used by many athletes worldwide to achieve a significant muscle mass increase within a short period of time.[1] However; one cannot be completely confident in terms of the quality and efficacy of such products because of several reasons, such as the possibility of bad storage conditions and originating from an unreliable source. Over the years, some consumers of testosterone boosters have complained of kidney and liver abnormalities that could be linked to their use of boosters.[10] Cases of erroneous product administration have occurred in the past as athletes may not follow the instructions on the label fully, which can lead to many side effects.[11] In the present case, a man was admitted to a hospital because of a severe abdominal pain. The pain was later found to be caused by liver injury. The diagnosis confirmed that the levels of the key hepatic enzymes were markedly elevated. The medical complications observed were found to have occurred following the consumption of two courses of a commercial testosterone booster. According to researchers based in the US, about 13% of the annual cases of acute liver failure are attributable to idiosyncratic drug- and/or supplement-induced liver injury.[12] Marked increase in the levels of ALT, AST, and gamma-glutamyl transferase was observed after consuming the first course of the commercial testosterone booster, and they started to decline after the 2nd and 3rd course. This abruptly increases the levels of liver enzymes after the first course may be attributed to the interruption effect of commercial testosterone booster on liver function as a result of the effects of its ingredients.
Looking for ingredients that work in the realm of supplements can be like finding a needle in a haystack. Testosterone boosters, like all dietary supplements, are not approved by the Food and Drug Administration prior to marketing. This lack of oversight dates back to the 1994 Dietary Supplement Health and Education Act (DSHEA), which stipulated that purveyors of supplements weren’t required to prove the safety of their products or the veracity of what’s on the labels to the FDA before listing them for sale. Often, there isn’t a lot of scientific backing behind an ingredient, or research has been done solely on animals, not humans.

This supplier is located in north sumatra (but they ship from Amazon via the U.S). They harvest the tongkat ali from the sumatra jungle and use roots of trees >10 years of age. I know this supplier is the best because he used to purchase from Tongkatali.org, which if you search Google you will find is the most reputable stuff. But he tests every batch before sending it out and became unhappy with the quality of their product. He now purchases from a new supplier who get tongkat ali extract from the same jungle, with the same extraction process, but who performs chemical and microbiological analysis of every batch they produce, which brings me peace of mind.
Testosterone is everywhere playing multiple roles from intrauterine life to advanced age. Table 1, the contents of which are always undergoing change primarily because of newly observed associations, provides an overview of the bodily systemic functions and patho-physiological states in which testosterone finds itself implicated. In some of these states there is a clear physiological cause and effect relationship. In others, evidence of the physiological role is early or tenuous.
Drumstick vegetable or Moringa oleifera is known for being 'libido-booster' in India. Whenever a guy buys a bunch of drumsticks in the market, people usually stare at him with the face 'he's planning a party tonight!' Although many studies are needed to prove it, Moringa is a rich source of magnesium, calcium and vitamin c. Moringa can also be considered a decent source of anti-oxidants.
Remember that each person is unique, and each body responds differently to treatment. TT may help erectile function, low sex drive, bone marrow density, anemia, lean body mass, and/or symptoms of depression. However, there is no strong evidence that TT will help memory recall, measures of diabetes, energy, tiredness, lipid profiles, or quality of life.
Finally, we looked at the proprietary blends of our remaining boosters, and dug into their ingredient lists. Supplements frequently include ingredients known for their “folk-lore” value; they’re believed to work, even when there isn’t any scientific background to prove it. Though we didn’t ding points if an ingredient wasn’t proven to be good (just so long as it wasn’t proven to be bad), we didn’t want to include any ingredient with evidence of causing harm.

Estrogen is important in men, but too high of a level has all sorts of negative consequences – ranging from heart attacks to prostate cancer (32 & 33). The balance between testosterone and estrogen (or estradiol) is critical for a man. If the ratio is out and estrogen starts to dominate you run into all sorts of issues – such as breast cell growth, prostate enlargement and of course lower testosterone.

Imagine if there was a pill that would transform your dick into an unstoppable orgasm machine; A pill that gave you the confidence to talk to any girl, because you knew one night with you and she would be begging for your cock. Women are attracted to men that can make them climax. The most PATHETIC trait a man can have is being bad at sex. But the exact opposite is also true.
Testosterone fluctuates according to age and life circumstance, often plummeting at the onset of parenthood, and spiking (for some) during moments of triumph. Romantic relationships, too, can impact a person’s testosterone production; though the reasons are still not fully understood, entering a relationship tends to increase women’s testosterone levels, while decreasing men’s. Since males produce significantly more testosterone than females—about 20 times more each day—females can be more sensitive to these fluctuations. High levels of testosterone, particularly in men, have been correlated with a greater likelihood of getting divorced or engaging in extramarital affairs, though a causal link has not been established.

There is a polymorphic CAG repeat sequence in the androgen receptor gene, which codes for a variable number of glutamine amino acids in the part of the receptor affecting gene transcription. A receptor with a short CAG sequence produces greater activity when androgens attach, and men with shorter CAG polymorphisms exhibit androgenic traits, such as preserved bone density (Zitzmann et al 2001) and prostate growth during testosterone treatment (Zitzmann et al 2003). Indirect evidence of the importance of androgens in the development of prostate cancer is provided by case control study findings of a shorter, more active CAG repeat sequence in the androgen receptor gene of patients with prostate cancer compared with controls (Hsing et al 2000, 2002).
Epidemiological evidence supports a link between testosterone and glucose metabolism. Studies in non-diabetic men have found an inverse correlation of total or free testosterone with glucose and insulin levels (Simon et al 1992; Haffner et al 1994) and studies show lower testosterone levels in patients with the metabolic syndrome (Laaksonen et al 2003; Muller et al 2005; Kupelian et al 2006) or diabetes (Barrett-Connor 1992; Andersson et al 1994; Rhoden et al 2005). A study of patients with type 2 diabetes using measurement of serum free testosterone by the gold standard method of equilibrium dialysis, found a 33% prevalence of biochemical hypogonadism (Dhindsa et al 2004). The Barnsley study demonstrated a high prevalence of clinical and biochemical hypogonadism with 19% having total testosterone levels below 8 nmol/l and a further 25% between 8–12 nmol/l (Kapoor, Aldred et al 2007). There are also a number longitudinal studies linking low serum testosterone levels to the future development of the metabolic syndrome (Laaksonen et al 2004) or type 2 diabetes (Haffner et al 1996; Tibblin et al 1996; Stellato et al 2000; Oh et al 2002; Laaksonen et al 2004), indicating a possible role of hypogonadism in the pathogenesis of type 2 diabetes in men. Alternatively, it has been postulated that obesity may be the common link between low testosterone levels and insulin resistance, diabetes and cardiovascular disease (Phillips et al 2003; Kapoor et al 2005). With regard to this hypothesis, study findings vary as to whether the association of testosterone with diabetes occurs independently of obesity (Haffner et al 1996; Laaksonen et al 2003; Rhoden et al 2005).

Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).
Since then there have been many publications documenting suppressed testosterone and gonadotropins (Daniell 2006) in men using opioid medications whether these agents were administrated orally (Daniell 2002) or intrathecally (Finch et al 2000). Not only do opioids act centrally by suppressing GnRH, they also act directly on the testes inhibiting the release of testosterone by Leydig cells during stimulation with human chorionic gonadotropin (Purohit et al 1978). Although the large majority of men (and women) receiving opioids do develop hypogonadism, about 15 percent also develop central hypocorticism and 15 percent develop growth hormone deficiency (Abs et al 2000).
If a man's testosterone looks below the normal range, there is a good chance he could end up on hormone supplements—often indefinitely. "There is a bit of a testosterone trap," Dr. Pallais says. "Men get started on testosterone replacement and they feel better, but then it's hard to come off of it. On treatment, the body stops making testosterone. Men can often feel a big difference when they stop therapy because their body's testosterone production has not yet recovered."
×