Dr. Darryn Willoughby, a professor of health, human performance and recreation and the director of the Exercise and Biochemical Nutrition Laboratory at Baylor University, told us that even in studies where there was an increase in testosterone, it was only around 15–20 percent. “In men with clinically normal testosterone levels, this modest increase will most likely not be anabolic enough to improve exercise performance,” he says. So if you have normal testosterone levels, and are simply trying to get an extra edge in gaining muscle, losing weight, or some extra time in the bedroom — you might see some results from taking a testosterone booster. But really, these will be most useful for men with low testosterone trying to get back to a healthy testosterone range.
The researchers found that the dose of testosterone required to produce different effects in the body varied widely. The influence of testosterone and estradiol also differed. As the testosterone gel dose was reduced, the scientists showed, reductions in lean mass, muscle size, and leg-press strength resulted from decreases in testosterone itself. In contrast, increases in body fat were due to the related declines in estradiol. Both testosterone and estradiol levels were associated with libido and erectile function.
The basis for my thinking that T levels could be boosted by cold baths came from a post I wrote a few years ago on the benefits of cold showers. One benefit I found in my research was that they could increase testosterone levels. I mentioned a 1993 study done by the Thrombosis Research Institute in England that found increased T levels after taking a cold shower. Here’s the thing. I can’t find a link to the original source and I can’t find any other studies that support this claim! So without supporting research, I’m unsure of the effects of cold showers on testosterone.
Present in much greater levels in men than women, testosterone initiates the development of the male internal and external reproductive organs during foetal development and is essential for the production of sperm in adult life. This hormone also signals the body to make new blood cells, ensures that muscles and bones stay strong during and after puberty and enhances libido both in men and women. Testosterone is linked to many of the changes seen in boys during puberty (including an increase in height, body and pubic hair growth, enlargement of the penis, testes and prostate gland, and changes in sexual and aggressive behaviour). It also regulates the secretion of luteinising hormone and follicle stimulating hormone. To effect these changes, testosterone is often converted into another androgen called dihydrotestosterone. 
Looking for ingredients that work in the realm of supplements can be like finding a needle in a haystack. Testosterone boosters, like all dietary supplements, are not approved by the Food and Drug Administration prior to marketing. This lack of oversight dates back to the 1994 Dietary Supplement Health and Education Act (DSHEA), which stipulated that purveyors of supplements weren’t required to prove the safety of their products or the veracity of what’s on the labels to the FDA before listing them for sale. Often, there isn’t a lot of scientific backing behind an ingredient, or research has been done solely on animals, not humans.

Exercise boosts testosterone in two important ways. First, specific types of exercise actually cause our body to produce more testosterone. We’ll talk more about those in a bit. Second, exercise helps to increase muscle mass and decrease body fat. As we’ve discussed previously, adipose tissue converts testosterone into estrogen. The less fat we get, the more T we have.


Bottom line: testosterone boosters aren’t right for a lot of people. We dive deep into ingredient research below, but typically, testosterone boosters contain at least one (and often three or more) different ingredients that each impact your circulatory system — both the heart and blood. If you’re taking any kind of blood-thinner medication, or you have a history of heart disease, these supplements can get really dangerous, really quickly. The simple fact of the matter is that hormones are tricky things to mess with, and a doctor should be your first port of call to help you safely achieve your goals — whether they’re related to fitness, weight, or libido.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).

In addition to conjugation and the 17-ketosteroid pathway, testosterone can also be hydroxylated and oxidized in the liver by cytochrome P450 enzymes, including CYP3A4, CYP3A5, CYP2C9, CYP2C19, and CYP2D6.[155] 6β-Hydroxylation and to a lesser extent 16β-hydroxylation are the major transformations.[155] The 6β-hydroxylation of testosterone is catalyzed mainly by CYP3A4 and to a lesser extent CYP3A5 and is responsible for 75 to 80% of cytochrome P450-mediated testosterone metabolism.[155] In addition to 6β- and 16β-hydroxytestosterone, 1β-, 2α/β-, 11β-, and 15β-hydroxytestosterone are also formed as minor metabolites.[155][156] Certain cytochrome P450 enzymes such as CYP2C9 and CYP2C19 can also oxidize testosterone at the C17 position to form androstenedione.[155]


In addition to weightlifting, studies have shown that HIIT workouts can also help boost testosterone levels. For those of you who don’t know, HIIT stands for high-intensity interval training. It calls for short, intense bursts of exercise, followed by a less-intense recovery period. You repeat with the intense/less-intense cycle several times throughout the workout. In addition to increasing T, HIIT has been shown to improve athletic conditioning and fat metabolism, as well as increase muscle strength.

A recent study compared total and bioavailable testosterone levels with inflammatory cytokines in men aged 65 and over. There was an inverse correlation with the pro-inflammatory soluble interleukin-6 receptor, but no association with interleukin-6 (IL-6), highly sensitive CRP (hsCRP), tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β (Maggio et al 2006). Another trial found that young men with idiopathic hypogonadotrophic hypogonadism had higher levels of proinflammatory factors interleukin-2 (IL-2), interleukin-4 (IL-4), complement C3c and total immunoglobulin in comparison to controls (Yesilova et al 2000). Testosterone treatment in a group of hypogonadal men, mostly with known coronary artery disease, induced anti-inflammatory changes in the cytokine profile of reduced IL-1β and TNF-α and increased IL-10 (Malkin, Pugh, Jones et al 2004).
Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
According to the Mayo Clinic, testosterone therapy can help treat hypogonadism. This condition occurs when the body can’t produce enough testosterone on its own. However, it’s unclear whether supplements can help. A study published in Nature Reviews Endocrinology found no scientific reason to prescribe testosterone to men over 65 years of age with normal or low to normal testosterone levels.

Robert Clark aka "The Troglodyte" is a 39 year old father of 3, Author, Fitness Trainer, Nutritional Researcher, Obstacle Course Racer, Avid Trail Runner and CrossFit Warrior. He is dedicated to helping others achieve their fitness goals. His extensive work in the field of natural testosterone elevation, inspired the creation of Alpha Wolf Nutrition where he serves as the Lead Product Researcher.
Ashwagandha is sometimes included in testosterone supplements because of the hypothesis that it improves fertility. However, we couldn’t find sufficient evidence to support this claim (at best, one study found that ashwagandha might improve cardiorespiratory endurance). WebMD advocates caution when taking this herb, as it may interact with immunosuppressants, sedative medications, and thyroid hormone medications.
Overall there is evidence that testosterone treatment increases lean body mass and reduces obesity, particularly visceral obesity, in a variety of populations including aging men. With regard to muscle changes, some studies demonstrate improvements in maximal strength but the results are inconsistent and it has not been demonstrated that these changes lead to clinically important improvements in mobility, endurance or quality of life. Studies are needed to clarify this. Changes in abdominal obesity are particularly important as visceral fat is now recognised as predisposing the metabolic syndrome, diabetes and cardiovascular disease.
Reduce stress levels. Stress is ubiquitous in the modern world, particularly for teenagers who face a variety of pressures and expectations. High levels of stress triggers the release of the stress hormone cortisol, which tends to counteract the negative physiological effects of stress. That's certainly beneficial, but cortisol also blocks the effects and impact of testosterone within the body, which can cause significant problems for teenage boys.[7] As such, try to provide a low-stress, stable environment for your teenager and give him opportunities to vent his frustrations and other emotions. Exercising, playing sports and developing enjoyable hobbies are all great at reducing stress.

What are the health benefits of kale? Kale is a leafy green vegetable featured in a variety of meals. With more nutritional value than spinach, kale may help to improve blood glucose, lower the risk of cancer, reduce blood pressure, and prevent asthma. Here, learn about the benefits and risks of consuming kale. We also feature tasty serving suggestions. Read now


Phthalates are found to cause poor testosterone synthesis by disrupting an enzyme required to create the male hormone. Women with high levels of DEHP and DBP (two types of phthalates) in their system during pregnancy were found to have sons that had feminine characteristics Phthalates are found in vinyl flooring, detergents, automotive plastics, soaps and shampoos, deodorants, perfumes, hair sprays, plastic bags and food packaging, among a long list of common products. Aside from phthalates, other chemicals that possess gender-bending traits are:
The definition of the metabolic syndrome continues to be a work in progress. Within the last decade a number of definitions have emerged each with its own set of criteria although there is considerable overlap among them. The most recent definition seems to enjoy considerable consensus. It requires central adiposity (>94 cm waist circumference) plus two of, increased triglycerides, decreased HDL cholesterol, hypertension, insulin resistance as evidenced by impaired glucose tolerance, or frank diabetes (Alberti 2005). Almost immediately on the heels of this consensus, came a number of specific chemical markers which have been proposed to complement the basic definition of the metabolic syndrome (Eckel et al 2005).
Testosterone makes a contribution to nitric oxide formation. Nitric oxide, released from penile nerves stimulates guanylate cyclase which catalyzes the transformation of guanosine-5-triphosphate into 3′,5′-cyclic, guanosine monophosphate (cyclic GMP). Gyclic GMP causes vasodilatation and hence erection formation (Morelli et al 2005). The breakdown of cyclic GMP to GMP is mediated by the enzyme, phosphodiesterase type-5, the inhibitors of which (eg, sildenafil citrate) enhance erection formation and maintanence (Carson and Lue 2005).
Men who watch a sexually explicit movie have an average increase of 35% in testosterone, peaking at 60–90 minutes after the end of the film, but no increase is seen in men who watch sexually neutral films.[43] Men who watch sexually explicit films also report increased motivation, competitiveness, and decreased exhaustion.[44] A link has also been found between relaxation following sexual arousal and testosterone levels.[45]

The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.

I am also suspect of the fact that men 100 years ago had testosterone levels of 800-2000 ng/dL. The truth is that there are men today that are stronger and more muscular than the men from 100 years ago. Sure the “average man” of today is less than the “average man” of prior generations, but this is because we sit around in offices all day, and then come home to sit on the couch and watch tv…little to no activity.
Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.
Prostate hyperplasia (BPH), or simply an enlarged prostate, is a serious problem among men, especially those over age 60. As I’ve pointed out, high testosterone levels are not a precursor to an enlarged prostate or cancer; rather, excessive DHT and estrogen levels formed as metabolites of testosterone are. Conventional medicine uses two classes of drugs to treat BPH, each having a number of serious side effects. These are:
Sexual arousal - boosting testosterone can improve sexual arousal, even if you have normal testosterone levels. Higher levels of testosterone can make it easier for you to get aroused and can boost your sex drive generally. While this doesn’t affect the physical action of your erections, if you are not getting hard because you’re not aroused then boosting testosterone could help.
The Organon group in the Netherlands were the first to isolate the hormone, identified in a May 1935 paper "On Crystalline Male Hormone from Testicles (Testosterone)".[180] They named the hormone testosterone, from the stems of testicle and sterol, and the suffix of ketone. The structure was worked out by Schering's Adolf Butenandt, at the Chemisches Institut of Technical University in Gdańsk.[181][182]

High intensity exercise is crucial to boost testosterone (13).  Exercises should be explosive in nature and maximize the resistant overload on the muscles.  Large muscle group compound lifts such as squats, deadlifts & burpees are some of the best testosterone boosting exercises.  The training session should be short (5-30 mins) and have very little rest periods between sets.
ZMA (unnecessary). So when I researched how to increase testosterone, a supplement called ZMA kept popping up. It’s a blend of zinc, magnesium, and vitamin B6. The purported benefits of ZMA include better and deeper sleep which indirectly is supposed to increase testosterone. Zinc and magnesium are necessary minerals in testosterone production, so a mega-dose should be useful, right? Well, no. I bought some and took it during the duration of experiment. I should have done some more research before I made the purchase. While one study in 1998 showed increased strength among athletes taking ZMA, two recent studies (study 1, study 2) have shown that it has absolutely no effect on total or free testosterone levels. Crap. My advice, unless you have a zinc and magnesium deficiency, no need to waste your money on this.
Studies conducted in rats have indicated that their degree of sexual arousal is sensitive to reductions in testosterone. When testosterone-deprived rats were given medium levels of testosterone, their sexual behaviors (copulation, partner preference, etc.) resumed, but not when given low amounts of the same hormone. Therefore, these mammals may provide a model for studying clinical populations among humans suffering from sexual arousal deficits such as hypoactive sexual desire disorder.[37]
Lean beef, chicken, fish, and eggs are some of your options. Tofu, nuts, and seeds have protein, too. Try to get about 5 to 6 ounces per day, although the ideal amount for you depends on your age, sex, and how active you are. When you don't eat enough of these foods, your body makes more of a substance that binds with testosterone, leaving you with less T available to do its job.
The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.
Men who watch a sexually explicit movie have an average increase of 35% in testosterone, peaking at 60–90 minutes after the end of the film, but no increase is seen in men who watch sexually neutral films.[43] Men who watch sexually explicit films also report increased motivation, competitiveness, and decreased exhaustion.[44] A link has also been found between relaxation following sexual arousal and testosterone levels.[45]
In compliance with the FTC guidelines, please assume the following about links and posts on this site: Many of the links on DrJockers.com are affiliate links of which I receive a small commission from sales of certain items, but the price is the same for you. If I post an affiliate link to a product, it is something that I personally use, support and would recommend without an affiliate link. Learn More
Testosterone has two major effects on bones: (a) through conversion to estradiol by way of the enzyme, aromatase, testosterone inhibits osteoclastic activity and hence bone resorption; and (b) through conversion to DHT via 5-α-reductase, it stimulates osteoblastic activity and so enhances the laying down of bone (Tivesten et al 2004; Davey and Morris 2005). Hypogonadal men are at risk for the development of osteopenia or osteoporosis and hence for subsequent fracture (Fink et al 2006). About one-third of all osteoporotic hip fractures occur in men and the risk of any osteoporotic fracture in men over 50 is as high as 25 percent (Seeman 1997; Adler 2006). Although treatment with testosterone in hypogonadal men increases bone mineral density (Katznelson et al 1996), it has not yet been established that this results in a reduction in fracture rate.
You should also get rid of cleaning products loaded with chemicals, artificial air fresheners, dryer sheets, fabric softeners, vinyl shower curtains, chemical-laden shampoos, and personal hygiene products. Replace them all with natural, toxin-free alternatives. Adjusting your diet can also help, since many processed foods contain gender-bending toxins. Switch to organic foods, which are cultivated without chemical interventions.
×