There are many supplements out there that could boost testosterone levels in your body. If you are kind of a person who shies away from such products and instead prefers natural food items, then this is the article for you. If you maintain a diet composed of the following listed food, then you would most certainly increase the testosterone and lower estrogen in your body naturally.
Elevated testosterone levels have been demonstrated to increase the growth of body muscles and contribute to better activation of the nervous system, resulting in more power and strength, a better mood, enhanced libido, and many other benefits.[3] Previous researches done on the anabolic role of testosterone and its impact on muscular strength in training-induced adaptations has provided rather conflicting findings, and a positive correlation between testosterone-mediated responses and both functional performance and body composition was found.[4,5] There are a number of naturally occurring substances that can boost testosterone levels in the body. Foods containing such substances are known as testosterone-foods; and they tend to be rich in vitamins, antioxidants, and minerals like zinc, which plays a key role in testosterone production.[2,6-8]

Osteoporosis refers to pathological loss of bone density and strength. It is an important condition due to its prevalence and association with bone fractures; most commonly of the hip, vertebra and forearm. Men are relatively protected from the development of osteoporosis by a higher peak bone mass compared with women (Campion and Maricic 2003). Furthermore, women lose bone at an accelerated rate immediately following the menopause. Nevertheless, men start to lose bone mass during early adult life and experience an increase in the rate of bone loss with age (Scopacasa et al 2002). Women of a given age have a higher prevalence of osteoporosis in comparison to men but the prevalence increases with age in both sexes. As a result, men have a lower incidence of osteoporotic fractures than women of a given age but the gap between the sexes narrows with advancing age (Chang et al 2004) and there is evidence that hip fractures in men are associated with greater mortality than in women (Campion and Maricic 2003).
If you still feel the need to supplement, keep in mind that supplemental magnesium is more likely than dietary magnesium to cause adverse effects, which is why the FDA fixed at 350 mg the Tolerable Upper Intake Level for magnesium supplementation in adults. Also, you may want to avoid magnesium oxide: it has poor bioavailability (rats absorbed only 15% in one study,[43] and humans only 4% in another[44]) and can cause intestinal discomfort and diarrhea.

In this study, an ethical approval No. 20171008 was obtained from Ethical Committee of Qassim province, Ministry of Health, Saudi Arabia. At the beginning, a written informed consent was taken from a 30-year-old man for participation in this study. The patient came to the King Saud Hospital, Unaizah, Qassim, Saudi Arabia, with abdominal pain. He looked pale and hazy, hence, immediately admitted. A battery of lab tests was ordered by the attending physician. Moreover, abdominal ultrasound imaging was performed. The results of the tests showed high levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver injury. Other serum parameters, such as total proteins, albumin, and iron, in addition to the levels of kidney and heart enzymes were all found to be in the normal range. A complete blood count showed normal levels of red blood cells, white blood cells, and platelets. The ultrasound images of the man’s abdomen were all found to be normal as well [Figure 2]. The patient, a sportsman, described that he was taking a testosterone commercial booster product called the Universal Nutrition Animal Stak for the purpose of enhancing his testosterone profile to achieve a better performance and body composition. The attending physician decided to admit the man for 1 week. Some medications were prescribed, and the patient was discharged later after having fully recovered.
Longitudinal studies in male aging studies have shown that serum testosterone levels decline with age (Harman et al 2001; Feldman et al 2002). Total testosterone levels fall at an average of 1.6% per year whilst free and bioavailable levels fall by 2%–3% per year. The reduction in free and bioavailable testosterone levels is larger because aging is also associated with increases in SHBG levels (Feldman et al 2002). Cross-sectional data supports these trends but has usually shown smaller reductions in testosterone levels with aging (Feldman et al 2002). This is likely to reflect strict entry criteria to cross-sectional studies so that young healthy men are compared to older healthy men. During the course of longitudinal studies some men may develop pathologies which accentuate decreases in testosterone levels.
Epidemiological studies suggest that many significant clinical findings and important disease states are linked to low testosterone levels. These include osteoporosis (Campion and Maricic 2003), Alzheimer’s disease (Moffat et al 2004), frailty, obesity (Svartberg, von Muhlen, Sundsfjord et al 2004), diabetes (Barrett-Connor 1992), hypercholesterolemia (Haffner et al 1993; Van Pottelbergh et al 2003), hypertension (Phillips et al 1993), cardiac failure (Tappler and Katz 1979; Kontoleon et al 2003) and ischemic heart disease (Barrett-Connor and Khaw 1988). The extent to which testosterone deficiency is involved in the pathogenesis of these conditions, or to which testosterone supplementation could be useful in their treatment is an area of great interest with many unanswered questions.
Male hypogonadism is a clinical syndrome caused by a lack of androgens or their action. Causes of hypogonadism may reflect abnormalities of the hypothalamus, pituitary, testes or target tissues. Increases in the amount of testosterone converted to estrogen under the action of the enzyme aromatase may also contribute to hypogonadism. Most aspects of the clinical syndrome are unrelated to the location of the cause. A greater factor in the production of a clinical syndrome is the age of onset. The development of hypogonadism with aging is known as late-onset hypogonadism and is characterised by loss of vitality, fatigue, loss of libido, erectile dysfunction, somnolence, depression and poor concentration. Hypogonadal ageing men also gain fat mass and lose bone mass, muscle mass and strength.
Thus, alcohol metabolism destroys the essential coenzyme required for T synthesis. Alcohol also contributes to the release of special endorphins which inhibit hormone production. In addition, drinking too much alcohol leads to the elevation of estrogen levels in men because of the conversion of testosterone in estrogen. It means that T levels come down with a run.
The same study showed that drinking did, however, lower semen count and quality. And I want to remind you – this is an article  on improving testosterone levels, not general health as there are a lot of studies that show drinking leads to an assortment of health issues. This acute spike in Testosterone could be due to the effect alcohol has on libido, and also the energy influx in the liver?
Hypogonadism is a disease in which the body is unable to produce normal amounts of testosterone due to a problem with the testicles or with the pituitary gland that controls the testicles. Testosterone replacement therapy can improve the signs and symptoms of low testosterone in these men. Doctors may prescribe testosterone as injections, pellets, patches or gels.
×