The reasons for considering such therapy become evident from the many associations, indicated above, that reduced testosterone has with a variety of both physiological functions (bone metabolism, muscle mass, cognitive function, libido, erectile function) and pathophysiological states (metabolic syndrome, diabetes mellitus, obesity, insulin resistance, autoimmune disease). Although a definitive long-term, large scale placebo-controlled double-blind study of testosterone therapy in the aging male has not yet been carried out, multiple shorter-term trials have suggested improvement by testosterone with a resultant enhancement of muscle mass, bone density, libido, erectile function, mood, motivation and general sense of well-being.
There are a lot of test booster blends out there. A lot of them are junk. I have tried to cover the most effective herbs above. As always, I recommend doing your own research and experiment to see if you notice an effect. If you would like one easy herbal solution I recommend starting with Mike Mahlers Aggressive Strength product purely because I have solid anecdotal evidence of its effectiveness. But again, supplements should be seen purely as that - a supplement to a healthy diet, plenty of sleep, hard training with adequate rest.
We know stress generates too much cortisol and shuts down sexual hormones since our bodies go into a "fight or flight" mode. Supplements that nourish our adrenals are key to correcting those imbalances. A few recommendations that I have include adrenal adaptogens such as maca, ashwagandha, Siberian ginseng, and rhodiola. Adaptogens are a great way to restore adrenal glands, balance hormones, and detoxify. Supplementing with 25 to 50 mg of DHEA, and a high-quality multivitamin with bioavailable B vitamins and high dose vitamin C can also be helpful. It's important to eat a diet high in quality omega-3s like salmon, oysters, and sardines. I suggest 2,000 to 6,000 mg per day of carnitine to improve energy production and mitochondrial function.
Are you getting enough vitamin D? Vitamin D is an essential nutrient, but it can be difficult for people to know if they are getting the right amount. Some people will be able to get enough vitamin D from sunlight. Others may need to make dietary changes or take supplements. Here, we explain how to get vitamin D from sunlight, food, and supplements. Read now
Some of them can benefit dieters or competitive athletes. These individuals often experience significant decreases in their testosterone levels as a result of the restrictive or stressful exercise or diet regimen. It is worth mentioning that many of them can actually benefit healthy and hyper-active individuals (for example, professional weight lifters), but we can’t know that for sure because there aren’t enough studies to back up this claim.
Testosterone is a sex hormone that plays important roles in the body. In men, it’s thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm. A small amount of circulating testosterone is converted to estradiol, a form of estrogen. As men age, they often make less testosterone, and so they produce less estradiol as well. Thus, changes often attributed to testosterone deficiency might be partly or entirely due to the accompanying decline in estradiol.
The maximum hormone concentration in the blood is reported immediately after the workout. And the effect lasts throughout the day. However, it’s important to ensure that your physical activity is moderate. The matter is that too much high-intensity exercise can give an undesirable result. But even if for any reason you can’t attend a gym, it’s not a problem. Just move as much as possible during the day. Even simple walking will be of great benefit.
At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.
Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
Robert Clark aka "The Troglodyte" is a 39 year old father of 3, Author, Fitness Trainer, Nutritional Researcher, Obstacle Course Racer, Avid Trail Runner and CrossFit Warrior. He is dedicated to helping others achieve their fitness goals. His extensive work in the field of natural testosterone elevation, inspired the creation of Alpha Wolf Nutrition where he serves as the Lead Product Researcher.
You can find a whole bunch of HIIT workouts online, but the one I used during my 90-day experiment was a simple wind sprint routine. On Tuesdays I went to the football field near my house, marked off 40 yards with some cones, and sprinted as fast as I could. I’d slowly walk back to the starting line, giving my body about a minute to rest, and then I’d sprint again. I typically did 40 sets of 40-yard sprints in a workout. I love sprints.
We reviewed the ingredient lists of our supplements and cut three that prescribed us an overdose of magnesium. While it’s possible to stay under the 350mg daily limit of supplemental magnesium by taking fewer pills than the manufacturer recommends, we were concerned that any manufacturer would advise you to exceed the recommended safety limit for magnesium intake by almost a third. sells science-backed testosterone support from top brands so you can continue to crush your goals. Our customer reviews will give you a snapshot of how each of these products works on real people living real lives, so you can make the best decision for your body. Ready to feel powerful again? Let’s find the test booster that’s right for you.
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
There is also a crazy case study about a Thai-male who reportedly got his DHT levels all the way to 158% above medical reference ranges after supplementing with Butea Superba (he visited the doctor and complained of too high libido), after some examination and questioning, the doctors thought it might be the supplement causing this sudden increase in androgenic hormones and they instructed him to seize the consumption. Within a week his blood serum 5-a DHT had fallen back to normal.
A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
Other side effects include increased risk of heart problems in older men with poor mobility, according to a 2009 study at Boston Medical Center. A 2017 study published in JAMA found that treatments increase coronary artery plaque volume. Additionally, the Food and Drug Administration (FDA) requires manufactures to include a notice on the labeling that states taking testosterone treatments can lead to possible increased risk of heart attacks and strokes. The FDA recommends that patients using testosterone should seek medical attention right away if they have these symptoms:
Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.
Consider supplementing with D-aspartic acid (DAA). DAA is an amino acid found in glandular tissues and it's thought to increase the activity of testosterone production and impact other hormones in the body. A 2009 study found that men who supplemented with 3,120 mg of DAA daily for 12 days experienced an increase in testosterone by an average of 42%.[14] The results showed that DAA may have a key role in the regulation of the release and synthesis of testosterone in men, although it's likely to have similar effects on teenage males also. Another form of aspartic acid is made in the body and found in a variety of foods, but DAA is not as commonly found in food sources.
Testosterone insufficiency has been associated with HIV infection in men (Dobs et al 1988). Early reports suggested that testosterone therapy may have an ameliorating effect on both depression and decreased energy in HIV infected men, even if testosterone levels were not reduced (Rabkin et al 1999; Grinspoon et al 2000; Rabkin et al 2000). Both depression and fatigue, however, are common features of HIV-positive men and may be associated with factors other than reduced levels of testosterone. The disease itself may induce depression and fatigue may be a consequence of the disease, per se, or of some of the medications used to control HIV.
Common side effects from testosterone medication include acne, swelling, and breast enlargement in males.[10] Serious side effects may include liver toxicity, heart disease, and behavioral changes.[10] Women and children who are exposed may develop virilization.[10] It is recommended that individuals with prostate cancer not use the medication.[10] It can cause harm if used during pregnancy or breastfeeding.[10]
Travison, T. G., Vesper, H. W., Orwoll, E, Wu, F., Kaufman, J. M., Wang, Y., …Bhasin, S. (2017, April1). Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. The Journal of Clinical Endocrinology & Metabolism, 102(4), 1161–1173. Retrieved from
Remember that each person is unique, and each body responds differently to treatment. TT may help erectile function, low sex drive, bone marrow density, anemia, lean body mass, and/or symptoms of depression. However, there is no strong evidence that TT will help memory recall, measures of diabetes, energy, tiredness, lipid profiles, or quality of life.
That testosterone decreases with age has been clearly established by many studies over many years in several different populations of men (Harman et al 2001; Feldman et al 2002; Araujo et al 2004; Kaufman and Vermeulen 2005). Of even greater significance is the steeper fall of the most biologically active fraction of total testosterone, non-sex hormone binding globulin (SHBG)- bound testosterone, or bioavailable testosterone (bio-T). The classical, but not the only approach to measuring bio-T, is to precipitate out SHBG (and hence the testosterone which is strongly bound to it as well) and measure the remainder as total testosterone (Tremblay 2003). Vermeulen et al (1999) have devised a less tedious and less expensive method of measuring a surrogate for bio-T, namely calculated bio-T, inserting total T, albumin, SHBG and a constant into a mathematical formulation. There is a strong correlation between actual bio-T and calculated bio-T (Emadi-Konjin et al 2003).

Hypogonadism is a disease in which the body is unable to produce normal amounts of testosterone due to a problem with the testicles or with the pituitary gland that controls the testicles. Testosterone replacement therapy can improve the signs and symptoms of low testosterone in these men. Doctors may prescribe testosterone as injections, pellets, patches or gels.