All the active substances available in TestoGen are fully natural. And their efficacy and safety is science-backed. So, if you don’t have individual sensitivity to the supplement ingredients and purchase the product directly from the manufacturer instead of purchasing from unknown suppliers, the likelihood of side effects during the supplementation is minimal. And the customer feedback proves this.
The prevalence of biochemical testosterone deficiency increases with age. This is partly due to decreasing testosterone levels associated with illness or debility but there is also convincing epidemiological data to show that serum free and total testosterone levels also fall with normal aging (Harman et al 2001; Feldman et al 2002). The symptoms of aging include tiredness, lack of energy, reduced strength, frailty, loss of libido, decreased sexual performance depression and mood change. Men with hypogonadism experience similar symptoms. This raises the question of whether some symptoms of aging could be due to relative androgen deficiency. On the other hand, similarities between normal aging and the symptoms of mild androgen deficiency make the clinical diagnosis of hypogonadism in aging men more challenging.
The chemical synthesis of testosterone from cholesterol was achieved in August that year by Butenandt and Hanisch.[183] Only a week later, the Ciba group in Zurich, Leopold Ruzicka (1887–1976) and A. Wettstein, published their synthesis of testosterone.[184] These independent partial syntheses of testosterone from a cholesterol base earned both Butenandt and Ruzicka the joint 1939 Nobel Prize in Chemistry.[182][185] Testosterone was identified as 17β-hydroxyandrost-4-en-3-one (C19H28O2), a solid polycyclic alcohol with a hydroxyl group at the 17th carbon atom. This also made it obvious that additional modifications on the synthesized testosterone could be made, i.e., esterification and alkylation.
Steven Doerr, MD, is a U.S. board-certified Emergency Medicine Physician. Dr. Doerr received his undergraduate degree in Spanish from the University of Colorado at Boulder. He graduated with his Medical Degree from the University Of Colorado Health Sciences Center in Denver, Colorado in 1998 and completed his residency training in Emergency Medicine from Denver Health Medical Center in Denver, Colorado in 2002, where he also served as Chief Resident.
The normal development of the prostate gland is dependent on the action of testosterone via the androgen receptor, and abnormal biosynthesis of the hormone or inactivating mutations of the androgen receptor are associated with a rudimentary prostate gland. Testosterone also requires conversion to dihydrotestosterone in the prostate gland for full activity. In view of this link between testosterone and prostate development, it is important to consider the impact that testosterone replacement may have on the prevalence and morbidity associated with benign prostatic hypertrophy (BPH) and prostate cancer, which are the common conditions related to pathological growth of the prostate gland.

Since then there have been many publications documenting suppressed testosterone and gonadotropins (Daniell 2006) in men using opioid medications whether these agents were administrated orally (Daniell 2002) or intrathecally (Finch et al 2000). Not only do opioids act centrally by suppressing GnRH, they also act directly on the testes inhibiting the release of testosterone by Leydig cells during stimulation with human chorionic gonadotropin (Purohit et al 1978). Although the large majority of men (and women) receiving opioids do develop hypogonadism, about 15 percent also develop central hypocorticism and 15 percent develop growth hormone deficiency (Abs et al 2000).
Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than testosterone, so that its androgenic potency is about 5 times that of T.[114] The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects.

In addition to weightlifting, studies have shown that HIIT workouts can also help boost testosterone levels. For those of you who don’t know, HIIT stands for high-intensity interval training. It calls for short, intense bursts of exercise, followed by a less-intense recovery period. You repeat with the intense/less-intense cycle several times throughout the workout. In addition to increasing T, HIIT has been shown to improve athletic conditioning and fat metabolism, as well as increase muscle strength.

Why the difference? The discrepancy in findings between these studies is likely due to the initial training status and base testosterone levels of the subjects. While more research is warranted on this ingredient, D-AA is one of several ingredients suggested to be effective in boosting test levels, especially for older men whose natural testosterone levels have declined due to the natural course of aging.
First, it’s important to note that these tactics and practices to boost testosterone naturally probably won’t work with men who have hypoandrogenism. If the glands and cells responsible for producing testosterone are damaged or defective, no amount of eggs or sleep will help you raise testosterone levels. You’ll likely need to use testosterone replacement therapy to get your T levels to a healthy place.
Another effect that can limit treatment is polycythemia, which occurs due to various stimulatory effects of testosterone on erythropoiesis (Zitzmann and Nieschlag 2004). Polycythemia is known to produce increased rates of cerebral ischemia and there have been reports of stroke during testosterone induced polycythaemia (Krauss et al 1991). It is necessary to monitor hematocrit during testosterone treatment, and hematocrit greater than 50% should prompt either a reduction of dose if testosterone levels are high or high-normal, or cessation of treatment if levels are low-normal. On the other hand, late onset hypogonadism frequently results in anemia which will then normalize during physiological testosterone replacement.
The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.
Every ingredient can be harmful when taken in significant quantities (we go more into that below), so we pored over each booster’s ingredient list to make sure that they weren’t serving up an overdose. In particular, we took a close look at magnesium and zinc, which have enough scientific background behind them to offer hard upper limits on how much you can safely consume.

This supplier is located in north sumatra (but they ship from Amazon via the U.S). They harvest the tongkat ali from the sumatra jungle and use roots of trees >10 years of age. I know this supplier is the best because he used to purchase from, which if you search Google you will find is the most reputable stuff. But he tests every batch before sending it out and became unhappy with the quality of their product. He now purchases from a new supplier who get tongkat ali extract from the same jungle, with the same extraction process, but who performs chemical and microbiological analysis of every batch they produce, which brings me peace of mind.
Robert Clark aka "The Troglodyte" is a 39 year old father of 3, Author, Fitness Trainer, Nutritional Researcher, Obstacle Course Racer, Avid Trail Runner and CrossFit Warrior. He is dedicated to helping others achieve their fitness goals. His extensive work in the field of natural testosterone elevation, inspired the creation of Alpha Wolf Nutrition where he serves as the Lead Product Researcher.
This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
A: Depo-Testosterone is a brand name medication that contains testosterone cypionate. Depo-Testosterone is given as an intramuscular injection. The medication is indicated for replacement therapy for men that have conditions associated with symptoms of deficiency in the hormone or absence of testosterone produced in the body. Conditions that can be associated with low testosterone include: delayed puberty, impotence and hormonal imbalances. Testosterone is a sex hormone that is naturally produced in the male testicles. In women, small amounts of testosterone is produced in the ovaries and by the adrenal system. Testosterone is available in various medications for testosterone replacement therapy. Different forms of testosterone (e.g. cypionate, enanthate etc) are contained in different brand name medications. Jen Marsico, RPh
I highly recommend using a great essential amino acid mix post-exercise in order to boost testosterone.  These essential amino acids and especially the concentrated branched chain amino acids leucine, isoleucine and valine stimulate muscle protein synthesis.  Getting these amino acids in the post-workout window dramatically boosts testosterone production (14).  I like using our Amino Strong and will often recommend a scoop pre-workout and post-workout for the best muscle building, testosterone boosting benefits.
A study published in the Journal of Steroid Biochemistry studied the effects of diet on serum sex hormones in healthy men. Results showed that when men decreased their healthy fat intake, serum concentrations of androstenedione, testosterone and free testosterone also decreased. (8) This indicates you can add low testosterone to the list of low-fat diet risks.
I know the experiment didn’t simply bring me back to my pre-August levels because of the fact that when I learned that the original test I took can sometimes overestimate your T levels, I took a more accurate test around four months after the start of the experiment (I’ve continued the lifestyle changes made during the experiment) and my total T had gone up again to 826.9 ng/dL.
An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.

Why bother with such common micronutrients? Because it's not uncommon for athletes to suffer from zinc and magnesium deficiencies, partly due to inadequate replenishing of levels after intense bouts of exercise. Deficiencies in these key minerals can lead to a poor anabolic hormone profile, impaired immune function, and increased cortisol, ultimately leading to decreases in strength and performance.[6]
Both men and women with Alzheimer’s Disease were found to have an increased concentration of SHBG and decreased free androgen index when compared with controls (Paoletti et al 2004). In a prospective study of 574 men whose baseline age span was 32–87 years and who were followed for a mean of 19.1 years (range, 4–37), the risk of developing Alzheimers’ Disease decreased 26 percent for each 10 unit increase in free testosterone index. The authors concluded that testosterone may be important for the prevention and treatment of AD (Moffat et al 2004).

Prolactin is suppressed by dopamine activity. Since supplementing L-DOPA suppresses prolactin (by increasing dopamine activity), supplementing L-DOPA would increase testosterone if prolactin was abnormally high. The average, healthy male does not have elevated prolactin (unless he’s on steroids), so supplementing with L-DOPA will not increase your testosterone levels.
Puberty occurs when there is an “awakening” of the hypothalamic-pituitary axis. The hypothalamus increases its secretion of gonadotropin releasing hormone (GnRH) which in turn stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). This leads to a significant increase in the production of testicular testosterone and the induction of the well-known secondary sex characteristics associated with puberty: growth spurt, increased libido, increased erectile function, acne, increased body hair, increased muscle mass, deepening of the voice, spermatogenesis, gynecomastia (usually transient).
The Organon group in the Netherlands were the first to isolate the hormone, identified in a May 1935 paper "On Crystalline Male Hormone from Testicles (Testosterone)".[180] They named the hormone testosterone, from the stems of testicle and sterol, and the suffix of ketone. The structure was worked out by Schering's Adolf Butenandt, at the Chemisches Institut of Technical University in Gdańsk.[181][182]
Individuals with metabolic syndrome are at increased risk for developing coronary artery disease and diabetes mellitus. Predicting who might develop the metabolic syndrome would allow preventive measures to be taken in addition to weight control and other lifestyle modifications such as cessation of smoking and increased exercise. It is known that with decreasing testosterone availability in aging males there is an increase in fat mass and decrease in lean body mass (van den Beld et al 2000), there are disorders of insulin and glucose metabolism (Haffner et al 1996) and dyslipidemia (Tsai et al 2004). Kupelian and colleagues (2006) in analyzing data from the Massachusetts Male Aging Study demonstrated that men with low levels of testosterone, sex hormone-binding globulin, or clinical androgen deficiency, especially men with a BMI of greater than 25, were at increased risk of developing the metabolic syndrome and hence, diabetes mellitus and/or coronary artery disease.
Men on long-term testosterone appear to have a higher risk of cardiovascular problems, like heart attacks, strokes, and deaths from heart disease. For example, in 2010, researchers halted the Testosterone in Older Men study when early results showed that men on hormone treatments had noticeably more heart problems. "In older men, theoretical cardiac side effects become a little more immediate," Dr. Pallais says.