Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
Vitamin D3. Vitamin D3 actually isn’t a vitamin, it’s a hormone — a really important hormone that provides a whole host of health benefits. Our bodies can naturally make vitamin D from the sun, but recent studies have shown that many Westerners are vitamin D3 deprived because we’re spending less and less time outdoors. When we do decide to venture outside, we slather our bodies with sunscreen, which prevents the sun reaching our skin to kick-off vitamin D3 production. If you’re not getting enough sun, you may have a vitamin D3 deficiency, which may contribute to low T levels. If you think you need more vitamin D3, supplement it with a pill. Studies have shown that men who take this supplement see a boost in their testosterone levels. Because I have a darker complexion — which makes me prone to Vitamin D3 deficiency — I took 4,000 IU of vitamin D3 in the morning.
Using steroids eventually trains your body to realize that it doesn’t have to produce as much testosterone to reach its equilibrium, so to reach the same highs you’ll need to take more steroids, and when you stop taking them, your body will need to readjust — you’ll be living with low testosterone for a while (and you’ll need to see a doctor if your body doesn’t readjust on its own). Forcing your body to stay above your natural testosterone, even if you’re naturally low, can create this kind of dependency which ultimately decreases the amount of testosterone your body will produce on its own.
Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
On review of the patient’s history, he was found to have undergone laboratory tests before starting to use the aforementioned testosterone booster product. All blood parameters (testosterone hormone and full chemical profile) before product intake were in the normal range. A physical examination that included blood pressure and pulse assessments showed nothing out of the ordinary, and the man appeared to be in good condition before product consumption. After that medical checkup, the athlete began to consume the product for 42 continuous days divided into 2 cycles (each cycle comprised 24 days). The daily dose was a single pack of Universal Nutrition Animal Stak (ingredients are listed in Table 1), following the exact direction of the manufacturing company hoping to get the best results.
Testosterone replacement therapy is currently only FDA approved for men who have been diagnosed with hypogonadism, but it’s also prescribed off-label for older men who take it in hopes that it will improve their libido. The use of testosterone therapy is increasingly common in the United States, with more than 2 million men receiving the therapy. Not every man benefits from taking testosterone supplements. Testosterone is available in different forms, including topicals such as gels, creams, and patches; injections; and pellets that are surgically placed directly beneath the skin. (7)
In 1927, the University of Chicago's Professor of Physiologic Chemistry, Fred C. Koch, established easy access to a large source of bovine testicles — the Chicago stockyards — and recruited students willing to endure the tedious work of extracting their isolates. In that year, Koch and his student, Lemuel McGee, derived 20 mg of a substance from a supply of 40 pounds of bovine testicles that, when administered to castrated roosters, pigs and rats, remasculinized them.[179] The group of Ernst Laqueur at the University of Amsterdam purified testosterone from bovine testicles in a similar manner in 1934, but isolation of the hormone from animal tissues in amounts permitting serious study in humans was not feasible until three European pharmaceutical giants—Schering (Berlin, Germany), Organon (Oss, Netherlands) and Ciba (Basel, Switzerland)—began full-scale steroid research and development programs in the 1930s.
Insulin causes lower Testosterone levels, so go easy on the carbs and eat more protein right? Well you need to be careful with protein consumption – Excess protein without fat can also cause insulin spikes. So go easy on that chicken breast with a side of egg white omelets washed down with a protein shake. From an insulin point of view you may as well drink a can of soda with some aminos acid! So what should you do? Eat more fat.
The bones and the brain are two important tissues in humans where the primary effect of testosterone is by way of aromatization to estradiol. In the bones, estradiol accelerates ossification of cartilage into bone, leading to closure of the epiphyses and conclusion of growth. In the central nervous system, testosterone is aromatized to estradiol. Estradiol rather than testosterone serves as the most important feedback signal to the hypothalamus (especially affecting LH secretion).[115] In many mammals, prenatal or perinatal "masculinization" of the sexually dimorphic areas of the brain by estradiol derived from testosterone programs later male sexual behavior.[116]
A notable study out of Wayne State University in Indiana found that older men who had a mild zinc deficiency significantly increased their testosterone from 8.3 to 16.0 nmol/L—a 93 percent increase—following six months of zinc supplementation. Researchers of the study concluded that zinc may play an important role in modulating serum testosterone levels in normal healthy men.6

For men with low blood testosterone levels, the benefits of hormone replacement therapy usually outweigh potential risks. However, for most other men it's a shared decision with your doctor. It offers men who feel lousy a chance to feel better, but that quick fix could distract attention from unknown long-term hazards. "I can't tell you for certain that this raises your personal risk of heart problems and prostate cancer, or that it doesn't," Dr. Pallais says.


When many people think of someone with a high level of testosterone, they may picture a man loaded with strength, sexual prowess, and machismo. But while high-T has been correlated with all those things, it’s also been correlated with aggression, sexual misconduct, and violence. One of testosterone’s most common uses—as a performance-enhancing steroid—illustrates both sides of the hormone. Injecting steroids can be a quick way for athletes to dramatically improve performance, but the side effects can also be extreme, and can include excessive body hair growth, sexual dysfunction, and the hard-to-corral anger known as “roid rage.”
The brain is also affected by this sexual differentiation;[13] the enzyme aromatase converts testosterone into estradiol that is responsible for masculinization of the brain in male mice. In humans, masculinization of the fetal brain appears, by observation of gender preference in patients with congenital diseases of androgen formation or androgen receptor function, to be associated with functional androgen receptors.[95]
In a recent study of male workers, men with low testosterone levels had an increased chance of severe erectile dysfunction (Kratzik et al 2005), although such a link had not been found previously (Rhoden et al 2002). Certainly erectile dysfunction is considered part of the clinical syndrome of hypogonadism, and questions regarding erectile dysfunction form part of the clinical assessment of patients with hypogonadism (Morley et al 2000; Moore et al 2004).

Nearly 1 out of every 4 men over age 50 experience the pain of losing the ability to perform sexually as a result of erectile dysfunction (ED). Common causes of ED are atherosclerosis, diabetes, prescription drug use (namely high blood pressure, depression, and allergy drugs), and—you guessed it—low testosterone. Supplements that may help include the following:
Testosterone is an important hormone for both men and women. Even though it’s often associated with a man’s libido, testosterone occurs in both sexes from birth. In females, it plays a part in sexual drive, energy, and physical strength. In males, it stimulates the beginning of sexual development and helps maintain a man’s health throughout his life.

Some of the effects of testosterone treatment are well recognised and it seems clear that testosterone treatment for aging hypogonadal men can be expected to increase lean body mass, decrease visceral fat mass, increase bone mineral density and decrease total cholesterol. Beneficial effects have been seen in many trials on other parameters such as glycemic control in diabetes, erectile dysfunction, cardiovascular risk factors, angina, mood and cognition. These potentially important effects require confirmation in larger clinical trials. Indeed, it is apparent that longer duration randomized controlled trials of testosterone treatment in large numbers of men are needed to confirm the effects of testosterone on many aspects of aging male health including cardiovascular health, psychiatric health, prostate cancer and functional capacity. In the absence of such studies, it is necessary to balance risk and benefit on the best available data. At the present time the data supports the treatment of hypogonadal men with testosterone to normalize testosterone levels and improve symptoms. Most men with hypogonadism do not have a contraindication to treatment, but it is important to monitor for adverse consequences including prostate complications and polycythemia.


Testosterone is included in the World Health Organization's list of essential medicines, which are the most important medications needed in a basic health system.[107] It is available as a generic medication.[10] The price depends on the form of testosterone used.[108] It can be administered as a cream or transdermal patch that is applied to the skin, by injection into a muscle, as a tablet that is placed in the cheek, or by ingestion.[10]
In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][151] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][151] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][151] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[153][154] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[152]

Travison, T. G., Vesper, H. W., Orwoll, E, Wu, F., Kaufman, J. M., Wang, Y., …Bhasin, S. (2017, April1). Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. The Journal of Clinical Endocrinology & Metabolism, 102(4), 1161–1173. Retrieved from https://academic.oup.com/jcem/article/102/4/1161/2884621
Osteoporosis refers to pathological loss of bone density and strength. It is an important condition due to its prevalence and association with bone fractures; most commonly of the hip, vertebra and forearm. Men are relatively protected from the development of osteoporosis by a higher peak bone mass compared with women (Campion and Maricic 2003). Furthermore, women lose bone at an accelerated rate immediately following the menopause. Nevertheless, men start to lose bone mass during early adult life and experience an increase in the rate of bone loss with age (Scopacasa et al 2002). Women of a given age have a higher prevalence of osteoporosis in comparison to men but the prevalence increases with age in both sexes. As a result, men have a lower incidence of osteoporotic fractures than women of a given age but the gap between the sexes narrows with advancing age (Chang et al 2004) and there is evidence that hip fractures in men are associated with greater mortality than in women (Campion and Maricic 2003).

Testosterone is the primary male sex hormone and an anabolic steroid. In male humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair.[2] In addition, testosterone is involved in health and well-being,[3] and the prevention of osteoporosis.[4] Insufficient levels of testosterone in men may lead to abnormalities including frailty and bone loss.
Currently available testosterone preparations in common use include intramuscular injections, subcutaneous pellets, buccal tablets, transdermal gels and patches (see Table 2). Oral testosterone is not widely used. Unmodified testosterone taken orally is largely subject to first-pass metabolism by the liver. Oral doses 100 fold greater than physiological testosterone production can be given to achieve adequate serum levels. Methyl testosterone esters have been associated with hepatotoxicity. There has been some use of testosterone undecanoate, which is an esterified derivative of testosterone that is absorbed via the lymphatic system and bypasses the liver. Unfortunately, it produces unpredictable testosterone levels and increases testosterone levels for only a short period after each oral dose (Schurmeyer et al 1983).
Ten healthy men aged around 24 years old spent 1 week sleeping for 8 hours per night at home, they then spent the next 11 nights in a lab. They slept for 10 hours per night for 3 nights, followed by 8 nights of restricted sleep, when they slept for only 5 hours. Doctors checked their blood every 15 to 30 minutes during the last night that they slept 10 hours, as well as on the sleep-restricted session.

Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
Most people associate testosterone with facial hair, gigantic muscles & illegal steroids.  Naturally produced testosterone plays a very important role in male/female metabolic function.  Lowered testosterone is a chronic epidemic that is threatening lives all around the world.  This article will go over 12 ways to boost testosterone levels naturally through healthy lifestyle measures.
Studies also show a consistent negative correlation of testosterone with blood pressure (Barrett-Connor and Khaw 1988; Khaw and Barrett-Connor 1988; Svartberg, von Muhlen, Schirmer et al 2004). Data specific to the ageing male population suggests that this relationship is particularly powerful for systolic hypertension (Fogari et al 2005). Interventional trials have not found a significant effect of testosterone replacement on blood pressure (Kapoor et al 2006).
In addition to weightlifting, studies have shown that HIIT workouts can also help boost testosterone levels. For those of you who don’t know, HIIT stands for high-intensity interval training. It calls for short, intense bursts of exercise, followed by a less-intense recovery period. You repeat with the intense/less-intense cycle several times throughout the workout. In addition to increasing T, HIIT has been shown to improve athletic conditioning and fat metabolism, as well as increase muscle strength.
Testosterone is an anabolic steroid hormone that plays a critical role in metabolism, sex drive, muscle building, mood regulation, memory & cognitive function.  Normal testosterone levels play a huge role in maintaining optimal weight as well as reducing risk of degenerative diseases such as osteoporosis, heart disease, diabetes, & certain cancers (1, 2, 3).
As crazy as it seems, it has lately been proven that there is a no relation between cholesterol intake and heart attack as doctors once thought (and many still do). This is slowly becoming common knowledge, regardless of pharmaceutical companies wishes. (Trust me, this billion dollar industry does not want you to know this. You don;t have to be a conspiracy theorist to see this.)
This paper will aim to review the current evidence of clinical effects of testosterone treatment within an aging male population. As with any other clinical intervention a decision to treat patients with testosterone requires a balance of risk versus benefit. We shall try to facilitate this by examining the effects of testosterone on the various symptoms and organs involved.
Hoffman, J., Ratamess, N., Kang, J., Magine, G., Faigenbaum, A. & Stout, J. (2006, August). Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes [Abstract]. International Journal of Sport Nutrition and Exercise Metabolism, 16(4), 430–46. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17136944
Grape seed extract is another ingredient with not enough research to suggest a dosage. Grape seed extract can interact with drugs like “blood thinners, NSAID painkillers (like aspirin, Advil, and Aleve), certain heart medicines, cancer treatments, and others.” If this sounds like you (or if you ever pop an Advil to clear off a headache), you’ll need to speak with a doctor to make sure this supplement is safe to take.
Autopsy studies have found histological prostate cancer to be very common, with one series showing a prevalence of greater than fifty percent in men over age sixty (Holund 1980). The majority of histological cancers go undetected so that the clinical incidence of the disease is much lower, but it is still the most prevalent non-skin cancer in men (Jemal et al 2003). Prostate cancer is also unusual in comparison to other adult cancers in that the majority of those with the disease will die of other causes. Treatment of prostate cancer with androgen deprivation is known to be successful and is widely practiced, indicating an important role for testosterone in modifying the behavior of prostate cancer. In view of this, testosterone treatment is absolutely contraindicated in any case of known or suspected prostate cancer. The question of whether testosterone treatment could cause new cases of prostate cancer, or more likely cause progression of undiagnosed histological prostate cancer that would otherwise have remained occult, is an important consideration when treating ageing males with testosterone.
12)  Use Aswaghanda and Collagen Protein:  This adaptogenic herb has been shown to reduce stress hormone, increase DHEA and boost testosterone levels.  You can take the Cortisol Defense to help you get restorative sleep at night which will support your testosterone.  In addition, I personally enjoy using the Organic Bone Broth Collagen in addition to the Amino Strong for a post weight training shake.  This protein powder has all the benefits of collagen protein and it has 500 mg of high potency ashwagandha in each serving!

Drugs.com provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include IBM Watson Micromedex (updated 1 Mar 2019), Cerner Multum™ (updated 1 Mar 2019), Wolters Kluwer™ (updated 28 Feb 2019) and others. Refer to our editorial policy for content sources and attributions.


Testosterone [Figure 1] is the main male sex hormone. It is responsible for male sexuality and is the main hormone-producing the features associated with masculinity such as substantial muscle mass, facial hair, libido, and sperm production.[1] Besides, the hormone has other vital functions as the basic chemical composition of testosterone is steroidal; and steroids are known to have significant physiological, as well as psychological, effects in male individuals, especially adults.[1] Testosterone production is reduced gradually in men starting from the age of 30.[2] Hence, testosterone blood concentrations slowly diminish as age progresses. As a result, men may experience a number of physiological and psychological events, such as a lack of sex-drive, erectile dysfunction, acute depression, fatigue, low energy levels, and insomnia.[3]

This causes your body to burn fat for the next 36 hours to replace your body’s vital energy stores. It addition to increasing your T-levels, it can help burn between 3–9 times more fat, lower your resting heart rate, lower blood pressure, keep your brain young by increasing circulation, and aids in detoxification by stimulating the lymphatic system.
Sleep apnea is another frequently listed contraindication to testosterone treatment. There have been a few reports of the development, or worsening, of sleep apnea during testosterone therapy (Matsumoto et al 1985) but sleep apnea is actually associated with lower serum testosterone levels (Luboshitzky et al 2002). The reduction in fat mass during treatment with testosterone could potentially be beneficial for sleep apnea, so many specialists will still consider patients for treatment with appropriate monitoring. It is wise to take a clinical history for sleep apnea during testosterone treatment in all men and perform sleep studies in those who develop symptoms.
The sex hormone testosterone is far more than just the stuff of the alpha male's swagger. Though it plays a more significant role in the life of the biological male, it is actually present in both sexes to some degree. Despite popular perceptions that testosterone primarily controls aggression and sex drive—although it does play a role in both of those things—research has shown that individual levels of testosterone are also correlated with our language skills and cognitive abilities. Testosterone occurs in the body naturally, but can be administered as a medication, too: its most common uses are in the treatment of hypogonadism and breast cancer, as well as in hormone therapy for transgender men.
The amount of testosterone synthesized is regulated by the hypothalamic–pituitary–testicular axis (see figure to the right).[129] When testosterone levels are low, gonadotropin-releasing hormone (GnRH) is released by the hypothalamus, which in turn stimulates the pituitary gland to release FSH and LH. These latter two hormones stimulate the testis to synthesize testosterone. Finally, increasing levels of testosterone through a negative feedback loop act on the hypothalamus and pituitary to inhibit the release of GnRH and FSH/LH, respectively.
There are numerous studies that show that Tribulus does not increase testosterone levels, and provides no assistance in increasing muscle mass or strength. I one of the two group of rugby players were put on the herb or a placebo. At the end of the experiment, there were zero changes in testosterone levels in the Tribulus group. Says a lot. [Source]
If in a 46 XY individual testosterone is either not produced in adequate concentrations as in gonadal dysgenesis (MacLaughlin and Donahue 2004), or in the absence of the enzyme 17 alpha-hydroxylase so that testosterone is not produced (Ergun-Longmire et al 2006), or testosterone androgen receptors are absent as in the androgen insensitivity syndrome (Hughes and Deeb 2006), phenotypic females will result.
“I can't tell you how good the product is! I'm in the best shape of my life. I used to take blood pressure medication and I don't even take that anymore. It's changed every aspect of my life. I was a 40 waist and I'm down to a 36. I'm 54 years old, and people tell me I look better than I ever have, and I look like I'm in my early 40s! And I'm telling you it's the Andro. This product is so much better than even the advertisements! From taking Andro400 I immediately notice a burst of energy . . . and my skin color, my sexual advancements, my energy, plus the weight loss, the toning of the body, and the increase strength and endurance . . . it's like night and day where I was then and where I am now, and Andro400 has made the difference. And my wife also takes it, 1 pill every other day, and she has experienced an amazing transformation in her body alone, with her hair, her complexion, and as well as in the gym. It's an outstanding product. My customers, my friends, my family, everybody is noticing the difference!”
So out of all the natural testosterone boosting supplements out there I only really recommend tongkat ali extract, d-aspartic acid, and ashwagandha. There are a many others out there, but none that meet the standard that these do. And most of the other ones are actually in Testofuel. But remember, use at your own discretion. Even natural supplements can have side effects, so talk to your doctor first, and start slow.

Testosterone is the primary male sex hormone and an anabolic steroid. In male humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair.[2] In addition, testosterone is involved in health and well-being,[3] and the prevention of osteoporosis.[4] Insufficient levels of testosterone in men may lead to abnormalities including frailty and bone loss.

A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
There are a lot of test booster blends out there. A lot of them are junk. I have tried to cover the most effective herbs above. As always, I recommend doing your own research and experiment to see if you notice an effect. If you would like one easy herbal solution I recommend starting with Mike Mahlers Aggressive Strength product purely because I have solid anecdotal evidence of its effectiveness. But again, supplements should be seen purely as that - a supplement to a healthy diet, plenty of sleep, hard training with adequate rest.

Levels of testosterone naturally decrease with age, but exactly what level constitutes "low T," or hypogonadism, is controversial, Harvard Medical School said. Testosterone levels vary wildly, and can even differ depending on the time of day they're measured (levels tend to be lower in the evenings). The National Institutes of Health includes the following as possible symptoms of low testosterone:
Dr. Darryn Willoughby, a professor of health, human performance and recreation and the director of the Exercise and Biochemical Nutrition Laboratory at Baylor University, told us that even in studies where there was an increase in testosterone, it was only around 15–20 percent. “In men with clinically normal testosterone levels, this modest increase will most likely not be anabolic enough to improve exercise performance,” he says. So if you have normal testosterone levels, and are simply trying to get an extra edge in gaining muscle, losing weight, or some extra time in the bedroom — you might see some results from taking a testosterone booster. But really, these will be most useful for men with low testosterone trying to get back to a healthy testosterone range.
A notable study out of Wayne State University in Indiana found that older men who had a mild zinc deficiency significantly increased their testosterone from 8.3 to 16.0 nmol/L—a 93 percent increase—following six months of zinc supplementation. Researchers of the study concluded that zinc may play an important role in modulating serum testosterone levels in normal healthy men.6
Vitamin D3. Vitamin D3 actually isn’t a vitamin, it’s a hormone — a really important hormone that provides a whole host of health benefits. Our bodies can naturally make vitamin D from the sun, but recent studies have shown that many Westerners are vitamin D3 deprived because we’re spending less and less time outdoors. When we do decide to venture outside, we slather our bodies with sunscreen, which prevents the sun reaching our skin to kick-off vitamin D3 production. If you’re not getting enough sun, you may have a vitamin D3 deficiency, which may contribute to low T levels. If you think you need more vitamin D3, supplement it with a pill. Studies have shown that men who take this supplement see a boost in their testosterone levels. Because I have a darker complexion — which makes me prone to Vitamin D3 deficiency — I took 4,000 IU of vitamin D3 in the morning.
Cross-sectional studies have found a positive association between serum testosterone and some measures of cognitive ability in men (Barrett-Connor, Goodman-Gruen et al 1999; Yaffe et al 2002). Longitudinal studies have found that free testosterone levels correlate positively with future cognitive abilities and reduced rate of cognitive decline (Moffat et al 2002) and that, compared with controls, testosterone levels are reduced in men with Alzheimer’s disease at least 10 years prior to diagnosis (Moffat et al 2004). Studies of the effects of induced androgen deficiency in patients with prostate cancer have shown that profoundly lowering testosterone leads to worsening cognitive functions (Almeida et al 2004; Salminen et al 2004) and increased levels of serum amyloid (Gandy et al 2001; Almeida et al 2004), which is central to the pathogenesis of Alzheimer’s disease (Parihar and Hemnani 2004). Furthermore, testosterone reduces amyloid-induced hippocampal neurotoxity in vitro (Pike 2001) as well as exhibiting other neuroprotective effects (Pouliot et al 1996). The epidemiological and experimental data propose a potential role of testosterone in protecting cognitive function and preventing Alzheimer’s disease.
The hypogonadal-obesity-adipocytokine cycle hypothesis. Adipose tissue contains the enzyme aromatase which metabolises testosterone to oestrogen. This results in reduced testosterone levels, which increase the action of lipoprotein lipase and increase fat mass, thus increasing aromatisation of testosterone and completing the cycle. Visceral fat also promotes lower testosterone levels by reducing pituitary LH pulse amplitude via leptin and/or other factors. In vitro studies have shown that leptin also inhibits testosterone production directly at the testes. Visceral adiposity could also provide the link between testosterone and insulin resistance (Jones 2007).
Miscellaneous: Sleep: (REM sleep) increases nocturnal testosterone levels.[142] Behavior: Dominance challenges can, in some cases, stimulate increased testosterone release in men.[143] Drugs: Natural or man-made antiandrogens including spearmint tea reduce testosterone levels.[144][145][146] Licorice can decrease the production of testosterone and this effect is greater in females.[147]
A recent study compared total and bioavailable testosterone levels with inflammatory cytokines in men aged 65 and over. There was an inverse correlation with the pro-inflammatory soluble interleukin-6 receptor, but no association with interleukin-6 (IL-6), highly sensitive CRP (hsCRP), tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β (Maggio et al 2006). Another trial found that young men with idiopathic hypogonadotrophic hypogonadism had higher levels of proinflammatory factors interleukin-2 (IL-2), interleukin-4 (IL-4), complement C3c and total immunoglobulin in comparison to controls (Yesilova et al 2000). Testosterone treatment in a group of hypogonadal men, mostly with known coronary artery disease, induced anti-inflammatory changes in the cytokine profile of reduced IL-1β and TNF-α and increased IL-10 (Malkin, Pugh, Jones et al 2004).
Sprinting has been shown numerous times that it has positive effects on testosterone levels. One 2011 study (ref 84) looked at weightlifters who performed 4x35m sprints twice a week. In contrast to the control group (who continued lifting but did not sprint), it was found that “After the 4-week training program, total testosterone and the total testosterone/cortisol ratio increased significantly in the (sprinters) EXP group”.
That said, keep in mind that using leucine as a free form amino acid can be highly counterproductive as when free form amino acids are artificially administrated, they rapidly enter your circulation while disrupting insulin function, and impairing your body's glycemic control. Food-based leucine is really the ideal form that can benefit your muscles without side effects.
Don't avoid natural fats. Many people think that all fat is bad and should be avoided, particularly by teenagers who are overweight. However, natural fats and cholesterol from animal products (meat, eggs, dairy) are essential nutrients, especially for the production of sex-related hormones such as testosterone.[4] Eating moderate amounts of saturated and unsaturated fats does not typically trigger weight gain — too many refined carbohydrates and artificial trans fat are the real culprits of obesity. In fact, some studies show that low-fat diets reduce testosterone levels in males, as well as create other growth and development problems.[5] Research indicates that a diet with less than 40% of the energy derived from fat leads to decreased testosterone levels.[6]

Since 2004, Andro400 has been the leader among natural testosterone boosters with a proven track record of successfully helping tens of thousands of customers increase their testosterone safely without side effects. Andro400 contains only the most highly researched and time-tested ingredients proven to naturally increase T levels. Enjoyed by men (and women) of all ages and results are backed by the industry's leading Satisfaction Guarantee.

Any day that you don’t get 20 minutes of direct sunlight on your skin, you want to supplement with 5,000 IUs of vitamin D3. If you get your blood levels tested and you’re extremely low — below 50 IUs — you typically want to do 5,000 IUs twice a day for three months until you get those numbers up. You can do everything in the world, but if your vitamin D levels aren’t right, your testosterone levels will stay low.


In addition to its role as a natural hormone, testosterone is used as a medication, for instance in the treatment of low testosterone levels in men and breast cancer in women.[10] Since testosterone levels decrease as men age, testosterone is sometimes used in older men to counteract this deficiency. It is also used illicitly to enhance physique and performance, for instance in athletes.
×