Currently available testosterone preparations in common use include intramuscular injections, subcutaneous pellets, buccal tablets, transdermal gels and patches (see Table 2). Oral testosterone is not widely used. Unmodified testosterone taken orally is largely subject to first-pass metabolism by the liver. Oral doses 100 fold greater than physiological testosterone production can be given to achieve adequate serum levels. Methyl testosterone esters have been associated with hepatotoxicity. There has been some use of testosterone undecanoate, which is an esterified derivative of testosterone that is absorbed via the lymphatic system and bypasses the liver. Unfortunately, it produces unpredictable testosterone levels and increases testosterone levels for only a short period after each oral dose (Schurmeyer et al 1983).
Smith and colleagues (2005) undertook a prospective study on the contribution of stress to coronary heart disease. Their study, which involved 2512 men aged 45 to 59 years, looked at a number of metabolic parameters. They found that an increased cortisol to testosterone ratio was associated with a high risk of coronary artery disease and that this risk was mediated by components of the insulin resistance syndrome. They reported that high cortisol and low testosterone levels are associated with a worsening of insulin resistance and that there is evidence to support the possibility of improving this pattern by treatment with testosterone.
Beast Sports Nutrition - Super Test has all four of our dream ingredients: magnesium, fenugreek, longjack, and zinc. These ingredients have all been demonstrated to help increase natural testosterone levels, with plenty of scientific research to support them (done on humans too, and not just rats). By combining all four ingredients, Super Test has the best chance of helping to increase your testosterone levels, and thereby helping you gain muscle or have a more active sex life.
Prostate hyperplasia (BPH), or simply an enlarged prostate, is a serious problem among men, especially those over age 60. As I’ve pointed out, high testosterone levels are not a precursor to an enlarged prostate or cancer; rather, excessive DHT and estrogen levels formed as metabolites of testosterone are. Conventional medicine uses two classes of drugs to treat BPH, each having a number of serious side effects. These are:
Testosterone boosters are used by many athletes worldwide to achieve a significant muscle mass increase within a short period of time.[1] However; one cannot be completely confident in terms of the quality and efficacy of such products because of several reasons, such as the possibility of bad storage conditions and originating from an unreliable source. Over the years, some consumers of testosterone boosters have complained of kidney and liver abnormalities that could be linked to their use of boosters.[10] Cases of erroneous product administration have occurred in the past as athletes may not follow the instructions on the label fully, which can lead to many side effects.[11] In the present case, a man was admitted to a hospital because of a severe abdominal pain. The pain was later found to be caused by liver injury. The diagnosis confirmed that the levels of the key hepatic enzymes were markedly elevated. The medical complications observed were found to have occurred following the consumption of two courses of a commercial testosterone booster. According to researchers based in the US, about 13% of the annual cases of acute liver failure are attributable to idiosyncratic drug- and/or supplement-induced liver injury.[12] Marked increase in the levels of ALT, AST, and gamma-glutamyl transferase was observed after consuming the first course of the commercial testosterone booster, and they started to decline after the 2nd and 3rd course. This abruptly increases the levels of liver enzymes after the first course may be attributed to the interruption effect of commercial testosterone booster on liver function as a result of the effects of its ingredients.
Testosterone booster products obtained from trusted sources and administered as per the recommendations of the manufacturer may still present some health risks. The present case provided weak evidence of causality between acute liver injury and a commercial testosterone booster. To guarantee an optimal outcome with no severe side effects, further research is warranted to confirm the present findings and determine whether the effects observed in this case report would be statistically significant in larger samples.
It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.
The science backs up the soldier’s self discovery, in fact, exposure to radiation (whether it’s from an army radar or the cell phone in your pocket, or the wifi router in your house) has been shown to lower sperm quality, fertility and testosterone. This is true not only for military personnel (88, 89,90) but all males living in a modern world (91).
Vitamin D deficiency is a growing epidemic in the US, and is profoundly affecting men’s health. The cholesterol-derived steroid hormone vitamin D is crucial for men’s health. It plays a role in the development of the sperm cell nucleus, and helps maintain semen quality and sperm count. Vitamin D can also increase your testosterone level, helping improve your libido. Have your vitamin D levels tested using a 25(OH)D or a 25-hydroxyvitamin D test. The optimal level of vitamin D is around 50 to 70 ng/ml for adults. There are three effective sources of vitamin D:
A notable study out of Wayne State University in Indiana found that older men who had a mild zinc deficiency significantly increased their testosterone from 8.3 to 16.0 nmol/L—a 93 percent increase—following six months of zinc supplementation. Researchers of the study concluded that zinc may play an important role in modulating serum testosterone levels in normal healthy men.6
Epidemiological studies have also assessed links between serum testosterone and non-coronary atherosclerosis. A study of over 1000 people aged 55 years and over found an inverse correlation between serum total and bioavailable testosterone and the amount of aortic atherosclerosis in men, as assessed by radiological methods (Hak et al 2002). Increased intima-media thickness (IMT) is an early sign of atherosclerosis and has also been shown to predict cardiovascular mortality (Murakami et al 2005). Cross-sectional studies have found that testosterone levels are negatively correlated with carotid IMT in independently living men aged 74–93 years (van den Beld et al 2003), diabetic men (Fukui et al 2003) and young obese men (De Pergola et al 2003). A 4-year follow up study of the latter population showed that free testosterone was also inversely correlated with the rate of increase of IMT (Muller et al 2004).
In general, the normal range in males is about 270 to 1070 ng/dL with an average level of 679 ng/dL. A normal male testosterone level peaks at about age 20, and then it slowly declines. Testosterone levels above or below the normal range are considered by many to be out of balance. Moreover, some researchers suggest that the healthiest men have testosterone levels between 400 - 600 ng/dL.
There are the testosterone deficiency signs, such as loss of sexual desire, erectile dysfunction, impaired fertility, chronic fatigue, etc. But it’s not always possible to understand which medical condition caused the decrease in testosterone levels. For example, if you always feel exhausted and have no sexual desire, it may provide evidence of depression.
Puberty occurs when there is an “awakening” of the hypothalamic-pituitary axis. The hypothalamus increases its secretion of gonadotropin releasing hormone (GnRH) which in turn stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). This leads to a significant increase in the production of testicular testosterone and the induction of the well-known secondary sex characteristics associated with puberty: growth spurt, increased libido, increased erectile function, acne, increased body hair, increased muscle mass, deepening of the voice, spermatogenesis, gynecomastia (usually transient).
It goes without saying that a healthy diet, quality sleep, productive lifestyle, and regular exercises can contribute to the overall increase of testosterone. However, it is also true that these activities are very often not enough for guys who have the problems with naturally low testosterone levels. This situation also includes people who want to boost their existing testosterone levels.
If you're completely inactive, or if you're completely burned out from overly intense training, neither one is going to help your T-levels. And when it comes to nutrition, eating enough—and getting adequate dietary fats—are both essential for healthy testosterone levels, and for general health.[2] In "All About Testosterone," Chris Lockwood, Ph.D., notes that extreme low-calorie dieting and fasting will hinder testosterone levels from staying at their peak, along with better-known villains like chronic stress.
Some boys even develop enlarged testicles and penis, armpit or pubic hair, as well as facial hair as early as age nine! Early puberty is not something to be taken lightly because it can significantly influence physical and psychological health, including an increased risk of hormone-related cancers. Precocious sexual development may also lead to emotional and behavioral issues, such as:
The amount of testosterone synthesized is regulated by the hypothalamic–pituitary–testicular axis (see figure to the right).[129] When testosterone levels are low, gonadotropin-releasing hormone (GnRH) is released by the hypothalamus, which in turn stimulates the pituitary gland to release FSH and LH. These latter two hormones stimulate the testis to synthesize testosterone. Finally, increasing levels of testosterone through a negative feedback loop act on the hypothalamus and pituitary to inhibit the release of GnRH and FSH/LH, respectively.
The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.