Cross-sectional studies have not shown raised testosterone levels at the time of diagnosis of prostate cancer, and in fact, low testosterone at the time of diagnosis has been linked with more locally aggressive and malignant tumors (Massengill et al 2003; Imamoto et al 2005; Isom-Batz et al 2005). This may reflect loss of hormone related control of the tumor or the effect of a more aggressive tumor in decreasing testosterone levels. One study found that 14% of hypogonadal men, with normal digital rectal examination and PSA levels, had histological prostate cancer on biopsy. It is possible that low androgen levels masked the usual evidence of prostate cancer in this population (Morgentaler et al 1996). Most longitudinal studies have not shown a correlation between testosterone levels and the future development of prostate cancer (Carter et al 1995; Heikkila et al 1999; Stattin et al 2004) but a recent study did find a positive association (Parsons et al 2005). Interpretation of such data requires care, as the presentation of prostate cancer could be altered or delayed in patients with lower testosterone levels.
Testosterone is more than a “male sex hormone”. It is an important contributor to the robust metabolic functioning of multiple bodily systems. The abuse of anabolic steroids by athletes over the years has been one of the major detractors from the investigation and treatment of clinical states that could be caused by or related to male hypogonadism. The unwarranted fear that testosterone therapy would induce prostate cancer has also deterred physicians form pursuing more aggressively the possibility of hypogonadism in symptomatic male patients. In addition to these two mythologies, many physicians believe that testosterone is bad for the male heart. The classical anabolic agents, 17-alkylated steroids, are, indeed, potentially harmful to the liver, to insulin action to lipid metabolism. These substances, however, are not testosterone, which has none of these adverse effects. The current evidence, in fact, strongly suggests that testosterone may be cardioprotective. There is virtually no evidence to implicate testosterone as a cause of prostate cancer. It may exacerbate an existing prostate cancer, although the evidence is flimsy, but it does not likely cause the cancer in the first place. Testosterone has stimulatory effects on bones, muscles, erythropoietin, libido, mood and cognition centres in the brain, penile erection. It is reduced in metabolic syndrome and diabetes and therapy with testosterone in these conditions may provide amelioration by lowering LDL cholesterol, blood sugar, glycated hemoglobin and insulin resistance. The best measure is bio-available testosterone which is the fraction of testosterone not bound to sex hormone binding globulin. Several forms of testosterone administration are available making compliance much less of an issue with testosterone replacement therapy.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
The most common "out of balance" testosterone levels are found to be on the low side of normal; this occurs because a male's highest testosterone level usually peaks at about age 20, and then it decreases slowly with age. It has been suggested that a 1% decrease in testosterone level per year is not unusual for middle-aged (30 to 50 years old) and older males. While this decrease may not be noticeable in some men, others may experience significant changes starting in their middle-aged years or more commonly at age 60 and above. This drop in testosterone levels is sometimes termed hypogonadism, "male menopause" or andropause.
In summary, low testosterone levels are linked to the presence of numerous cardiovascular risk factors. Testosterone treatment acts to improve some of these factors, but effects may vary according to pre- and post-treatment testosterone levels, as well as other factors. There is little data from trials specific to aging males. Appropriately-powered randomized controlled trials, with cardiovascular disease primary endpoints, are needed to clarify the situation, but in the meantime the balance of evidence is that testosterone has either neutral or beneficial effects on the risk of cardiovascular disease in men. It is particularly important to define the effect of testosterone treatment on cardiovascular disease in view of its potential use as an anti-anginal agent.
But when a premenopausal woman’s testosterone levels are too high, it can lead to polycystic ovary syndrome (PCOS), a condition that increases the risk of irregular or absent menstrual cycles, infertility, excess hair growth, skin problems, and miscarriage. High levels of testosterone in women, whether caused by PCOS or by another condition, can cause serious health conditions such as insulin resistance, diabetes, high cholesterol, high blood pressure, and heart disease. (12)
Take 250 mg of Forskolin, standardized to 10 percent, twice a day. Take one serving before training and the other with a meal. According to "Natural Anabolics," Forskolin decreased body fat and increased free testosterone levels in training individuals as compared to a placebo. Forskolin comes from the herb coleus forskohlii and is also known as Forslean.

"I'm 53 years old and my passion is surfing the oceans worldwide – big waves. Since taking Andro400, I'm now down to my ideal weight – from 185 to 175 now which is probably a net 15 pound loss, taking into account that the increased muscle I have now is heavier than the fat it replaced. My energy level is up. I feel strong and more physically fit in general. Also, from surfing I have been injured many times – for example I've broken my neck and pelvis among other things. Taking Andro400, I have much less pain overall – and I've been able to take less pain medication and anti-inflammatory drugs.”


^ Southren AL, Gordon GG, Tochimoto S, Pinzon G, Lane DR, Stypulkowski W (May 1967). "Mean plasma concentration, metabolic clearance and basal plasma production rates of testosterone in normal young men and women using a constant infusion procedure: effect of time of day and plasma concentration on the metabolic clearance rate of testosterone". The Journal of Clinical Endocrinology and Metabolism. 27 (5): 686–94. doi:10.1210/jcem-27-5-686. PMID 6025472.
Among my favorite stress management tools is the Emotional Freedom Technique (EFT), a method similar to acupuncture but without the use of needles. EFT is known to eliminate negative behavior and instill a positive mentality. Always bear in mind that your emotional health is strongly linked to your physical health, and you have to pay attention to your negative feelings as much as you do to the foods you eat.

The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Using steroids eventually trains your body to realize that it doesn’t have to produce as much testosterone to reach its equilibrium, so to reach the same highs you’ll need to take more steroids, and when you stop taking them, your body will need to readjust — you’ll be living with low testosterone for a while (and you’ll need to see a doctor if your body doesn’t readjust on its own). Forcing your body to stay above your natural testosterone, even if you’re naturally low, can create this kind of dependency which ultimately decreases the amount of testosterone your body will produce on its own.

It is important to note that you can certainly boost testosterone naturally without supplementation. Supplements are expensive now a days and a lot of people do not like taking tons of pills. Plus, a lot of these vitamins and minerals are only needed if deficient, so I recommend getting routine blood work done to see where you are short. I can almost guarantee you will come out vitamin D deficient, so while you don’t have to take these, they will certainly help.


Xenoestrogen is a chemical that imitates estrogen in the human body. When men are exposed to too much of this estrogen-imitating chemical, T levels drop significantly. The problem is xenoestrogen is freaking everywhere — plastics, shampoos, gasoline, cows, toothpaste. You name it and chances are there are xenoestrogen in it. The ubiquitous nature of this chemical in our modern world is one reason some endocrinologists believe that testosterone levels are lower in men today than in decades past. It’s also a reason doctors say the number of boys born with hypospadias — a birth defect in which the opening of the urethra is on the underside of the penis and not at the tip — has doubled.  Note to expecting parents: make sure mom stays away from xenoestrogens during the pregnancy.
Opioid substances are in common use both licit and illicit. Opiates are potent analgesics but they are also highly addictive. They are frequently prescribed for both acute and chronic pain and when used chronically, often induce opiate dependence in the user. Pain clinics regularly use narcotic agents in many of their patients. Methadone, in particular, is regularly prescribed to opiate addicts who have entered a program aimed at reducing narcotic dosage and ultimately weaning the patient off it altogether. Most men who are on chronic high doses of an opiate become hypogonadal. This was first recognized in the 1970’s when heroin addicts were found to have suppressed levels of testosterone (Brambilla et al 1977). Also suppressed were LH and FSH pointing to a probable inhibition of GnRH release.

Men who produce more testosterone are more likely to engage in extramarital sex.[55] Testosterone levels do not rely on physical presence of a partner; testosterone levels of men engaging in same-city and long-distance relationships are similar.[54] Physical presence may be required for women who are in relationships for the testosterone–partner interaction, where same-city partnered women have lower testosterone levels than long-distance partnered women.[59]
1) Eat a good diet daily consisting of 10 servings of fresh vegetables (recommend juicing, and go heavy on the carrots & broccoli), lots of cholesterol in the form of eggs, butter, bacon, avocados, good fat, and take in moderate levels of protein. Avoid all trans fat and limit sugars, carbohydrates and any grains. Lastly, snack on nuts throughout the day between meals to keep your metabolism going.
A number of epidemiological studies have found that bone mineral density in the aging male population is positively associated with endogenous androgen levels (Murphy et al 1993; Ongphiphadhanakul et al 1995; Rucker et al 2004). Testosterone levels in young men have been shown to correlate with bone size, indicating a role in determination of peak bone mass and protection from future osteoporosis (Lorentzon et al 2005). Male hypogonadism has been shown to be a risk factor for hip fracture (Jackson et al 1992) and a recent study showed a high prevalence of hypogonadism in a group of male patients with average age 75 years presenting with minimal trauma fractures compared to stroke victims who acted as controls (Leifke et al 2005). Estrogen is a well known determinant of bone density in women and some investigators have found serum estrogen to be a strong determinant of male bone density (Khosla et al 1998; Khosla et al 2001). Serum estrogen was also found to correlate better than testosterone with peak bone mass (Khosla et al 2001) but this is in contradiction of a more recent study showing a negative correlation of estrogen with peak bone size (Lorentzon et al 2005). Men with aromatase deficiency (Carani et al 1997) or defunctioning estrogen receptor mutations (Smith et al 1994) have been found to have abnormally low bone density despite normal or high testosterone levels which further emphasizes the important influence of estrogen on male bone density.
A: Testosterone products can improve a male's muscle strength and create a more lean body mass. Typically, these effects are not noticed within the first two weeks of therapy, but it is possible that he is more sensitive and responds well to the therapy. Some of the other more common side effects of testosterone patches are headache, depression, rash, changes in libido, acne, male pattern baldness, and increased cholesterol levels. This is not a complete list of the side effects associated with testosterone patches. Megan Uehara, PharmD
^ Jump up to: a b Sapienza P, Zingales L, Maestripieri D (September 2009). "Gender differences in financial risk aversion and career choices are affected by testosterone". Proceedings of the National Academy of Sciences of the United States of America. 106 (36): 15268–73. Bibcode:2009PNAS..10615268S. doi:10.1073/pnas.0907352106. PMC 2741240. PMID 19706398.
Puberty occurs when there is an “awakening” of the hypothalamic-pituitary axis. The hypothalamus increases its secretion of gonadotropin releasing hormone (GnRH) which in turn stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). This leads to a significant increase in the production of testicular testosterone and the induction of the well-known secondary sex characteristics associated with puberty: growth spurt, increased libido, increased erectile function, acne, increased body hair, increased muscle mass, deepening of the voice, spermatogenesis, gynecomastia (usually transient).
So if you’re intent on maximizing your testosterone levels, and/or you have applied all of the above and you’re still not satisfied with your results (which would be surprising) then you could try the below. I will point out that some of these tips may not have the scientific evidence to back them up like the previous points, but I can assure you that either I have or do use them (and have positive results), or a client has used them with pleasing results, or finally it is such a new conception that there isn’t enough evidence to prove it one way or another.

Important future developments will include selective androgen receptor modulators (SARMs). These drugs will be able to produce isolated effects of testosterone at androgen receptors. They are likely to become useful clinical drugs, but their initial worth may lie in facilitating research into the relative importance of testosterone’s action at the androgen receptor compared to at other sites or after conversion to other hormones. Testosterone will remain the treatment of choice for late onset hypogonadism for some time to come.
Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).
It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.
So, I can definitely recommend these amazing for anyone who wants to last longer in bed and for anyone who wants to improve their size. Don’t hesitate to use that sample offer of , and make sure you take it because now I’m FINALLY satisfied. On top of my hubby’s erections being on point, he is now way bigger than before and lasts way longer than ever before when we use it.
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
Vitamin D is arguably the most important vitamin when it comes to testosterone. A study published in the Journal of Clinical Endocrinology examined the relationship between vitamin D supplementation and testosterone levels in men. The authors found that participants with higher levels of vitamin D had significantly higher levels of free testosterone compared to those with insufficient levels of vitamin D.8 Based on these study results, it appears vitamin D has a strong relationship with testosterone levels.
During the second trimester, androgen level is associated with sex formation.[13] This period affects the femininization or masculinization of the fetus and can be a better predictor of feminine or masculine behaviours such as sex typed behaviour than an adult's own levels. A mother's testosterone level during pregnancy is correlated with her daughter's sex-typical behavior as an adult, and the correlation is even stronger than with the daughter's own adult testosterone level.[14]
This supplement is not only marketed to increase sexual desire, but the manufacturer also claims this testosterone booster can accelerate muscle growth, build endurance and decrease muscle pain after workouts. The main ingredient in the product is 25 mg of zinc. Additional ingredients include a proprietary blend of ginkgo biloba, cayenne pepper, tribulis terristris and maca. Recommended dosage is three capsules taken on a daily basis as a dietary supplement.

   The International Journal of Sports Physiology and Performance recently studied tennis players, rugby teams, and wrestlers to find a link between testosterone and competitive outcome. They found that the difference between winning and losing was reflected in testosterone levels! The athletes' own natural testosterone prior to the game was directly related to the outcome after the game -- the higher the testosterone, the more frequently the athlete won.6
In this study, an ethical approval No. 20171008 was obtained from Ethical Committee of Qassim province, Ministry of Health, Saudi Arabia. At the beginning, a written informed consent was taken from a 30-year-old man for participation in this study. The patient came to the King Saud Hospital, Unaizah, Qassim, Saudi Arabia, with abdominal pain. He looked pale and hazy, hence, immediately admitted. A battery of lab tests was ordered by the attending physician. Moreover, abdominal ultrasound imaging was performed. The results of the tests showed high levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver injury. Other serum parameters, such as total proteins, albumin, and iron, in addition to the levels of kidney and heart enzymes were all found to be in the normal range. A complete blood count showed normal levels of red blood cells, white blood cells, and platelets. The ultrasound images of the man’s abdomen were all found to be normal as well [Figure 2]. The patient, a sportsman, described that he was taking a testosterone commercial booster product called the Universal Nutrition Animal Stak for the purpose of enhancing his testosterone profile to achieve a better performance and body composition. The attending physician decided to admit the man for 1 week. Some medications were prescribed, and the patient was discharged later after having fully recovered.
Some of these signs and symptoms can be caused by various underlying factors, including medication side effects, obstructive sleep apnea, thyroid problems, diabetes and depression. It's also possible that these conditions may be the cause of low testosterone levels, and treatment of these problems may cause testosterone levels to rise. A blood test is the only way to diagnose a low testosterone level.
×