Testosterone is an anabolic steroid hormone that plays a critical role in metabolism, sex drive, muscle building, mood regulation, memory & cognitive function.  Normal testosterone levels play a huge role in maintaining optimal weight as well as reducing risk of degenerative diseases such as osteoporosis, heart disease, diabetes, & certain cancers (1, 2, 3).
Falling in love decreases men's testosterone levels while increasing women's testosterone levels. There has been speculation that these changes in testosterone result in the temporary reduction of differences in behavior between the sexes.[53] However, it is suggested that after the "honeymoon phase" ends—about four years into a relationship—this change in testosterone levels is no longer apparent.[53] Men who produce less testosterone are more likely to be in a relationship[54] or married,[55] and men who produce more testosterone are more likely to divorce;[55] however, causality cannot be determined in this correlation. Marriage or commitment could cause a decrease in testosterone levels.[56] Single men who have not had relationship experience have lower testosterone levels than single men with experience. It is suggested that these single men with prior experience are in a more competitive state than their non-experienced counterparts.[57] Married men who engage in bond-maintenance activities such as spending the day with their spouse/and or child have no different testosterone levels compared to times when they do not engage in such activities. Collectively, these results suggest that the presence of competitive activities rather than bond-maintenance activities are more relevant to changes in testosterone levels.[58]

Phthalates are found to cause poor testosterone synthesis by disrupting an enzyme required to create the male hormone. Women with high levels of DEHP and DBP (two types of phthalates) in their system during pregnancy were found to have sons that had feminine characteristics Phthalates are found in vinyl flooring, detergents, automotive plastics, soaps and shampoos, deodorants, perfumes, hair sprays, plastic bags and food packaging, among a long list of common products. Aside from phthalates, other chemicals that possess gender-bending traits are:


The first of the natural testosterone boosters is intermittent fasting. One of the biggest intermittent fasting benefits? It’s been shown to increase testosterone by nearly 200 percent or even up to 400 percent. (4) In addition, a study by the University of Virginia Medical School noted that growth hormone levels increased 2,000 percent over the baseline in men who ate no calories for 24 hours, and growth hormone levels are correlated with testosterone. (5)
Lean beef, chicken, fish, and eggs are some of your options. Tofu, nuts, and seeds have protein, too. Try to get about 5 to 6 ounces per day, although the ideal amount for you depends on your age, sex, and how active you are. When you don't eat enough of these foods, your body makes more of a substance that binds with testosterone, leaving you with less T available to do its job.
"Some say it's just a part of aging, but that's a misconception," says Jason Hedges, MD, PhD, a urologist at Oregon Health and Science University in Portland. A gradual decline in testosterone can't explain a near-total lack of interest in sex, for example. And for Hedges' patients who are in their 20s, 30s, and early 40s and having erectile problems, other health problems may be a bigger issue than aging.
It is important to note that you can certainly boost testosterone naturally without supplementation. Supplements are expensive now a days and a lot of people do not like taking tons of pills. Plus, a lot of these vitamins and minerals are only needed if deficient, so I recommend getting routine blood work done to see where you are short. I can almost guarantee you will come out vitamin D deficient, so while you don’t have to take these, they will certainly help.

A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
The researchers found that the dose of testosterone required to produce different effects in the body varied widely. The influence of testosterone and estradiol also differed. As the testosterone gel dose was reduced, the scientists showed, reductions in lean mass, muscle size, and leg-press strength resulted from decreases in testosterone itself. In contrast, increases in body fat were due to the related declines in estradiol. Both testosterone and estradiol levels were associated with libido and erectile function.
In addition to conjugation and the 17-ketosteroid pathway, testosterone can also be hydroxylated and oxidized in the liver by cytochrome P450 enzymes, including CYP3A4, CYP3A5, CYP2C9, CYP2C19, and CYP2D6.[155] 6β-Hydroxylation and to a lesser extent 16β-hydroxylation are the major transformations.[155] The 6β-hydroxylation of testosterone is catalyzed mainly by CYP3A4 and to a lesser extent CYP3A5 and is responsible for 75 to 80% of cytochrome P450-mediated testosterone metabolism.[155] In addition to 6β- and 16β-hydroxytestosterone, 1β-, 2α/β-, 11β-, and 15β-hydroxytestosterone are also formed as minor metabolites.[155][156] Certain cytochrome P450 enzymes such as CYP2C9 and CYP2C19 can also oxidize testosterone at the C17 position to form androstenedione.[155]
A: A troche is a small lozenge designed to dissolve in the mouth. Testosterone is available in troche or buccal form. If you are referring to testosterone troche, this product is generally used to treat conditions in men that result from a lack of natural testosterone. Testosterone is vital to maintaining an active and healthy male sex drive. Testosterone deficiency can cause erectile dysfunction. Studies suggest that if erectile dysfunction is associated with a low testosterone level, it can often be treated with prescription testosterone pills. Based on your complete medical history and blood levels of testosterone, your doctor can determine the best treatment option to meet your needs. For more information, please consult with your health care provider and visit //www.everydayhealth.com/drugs/testosterone. Michelle McDermott, PharmD

Consume vegetable carbohydrates and healthy fats. Your body requires the carbohydrates from fresh vegetables rather than grains and sugars. In addition to mono- or polyunsaturated fats found in avocados and raw nuts, saturated fats are also essential to building your testosterone production. According to research, there was a decrease in testosterone stores in people who consumed a diet low in animal-based fat.11 Aside from avocados and raw nuts, ideal sources of healthy fat that can boost your testosterone levels include:
It is now well-established that elderly men with type 2 diabetes mellitus have reduced levels of testosterone (Barrett-Connor 1992; Betancourt-Albrecht and Cunningham 2003). It is known, however, that obese men and diabetic men have reduced levels of SHBG (Barrett-Connor 1990) which could account for the lower total testosterone levels found in diabetic men. Dhindsa et al (2004) studied 103 male patients who had type 2 diabetes mellitus using free testosterone (done by equilibrium dialysis) or calculated free testosterone which takes SHBG levels into account. Of the 103 patients, 57 had free testosterone by equilibrium dialysis and of these, 14 (25%) had a free T below 0.174 nmol/L and were considered hypogonadal. Using a total testosterone of 10.4 nmol/L (300ng/dl) as the lower limit of normal 45 patients (43%) were in the hypogonadal range. They also found that LH and FSH concentrations were significantly lower in the hypogonadal group. The authors thus concluded that hypogonadotropic hypogonadism was a common finding in type 2 diabetes irrespective of glycemic control, duration of disease or the presence of complications of diabetes or obesity.
What you really need to worry about is the level of triglycerides in your blood. High triglycerides are a big warning sign for potential cardiovascular problems and disease. Again, to keep your triglycerides low while on a high cholesterol diet, take in a lot of veggies, limit your carb intake (especially sugars), supplement with omega 3 fish oil (more fat to make your cholesterol better – ironic right?), and exercise regularly.
Many studies demonstrate an improvement in mood of hypogonadal men treated with testosterone (Wang et al 1996; Azad et al 2003). The relationship between testosterone status and mood, particularly depression, remains unresolved. Using Beck’s Depression Inventory, Barrett-Connor and colleagues found that the depression score worsened as men aged, exactly at a time when testosterone levels are decreasing (Barrett-Connor et al 1999). Pope and colleagues found that testosterone treatment in men with refractory depression lowered the Hamilton Depression rating scale and the Clinical Global Impression severity rating (Pope et al 2003). The Beck Depression Inventory remained unchanged in Pope’s study.

The mineral zinc is important for testosterone production, and supplementing your diet for as little as six weeks has been shown to cause a marked improvement in testosterone among men with low levels.1 Likewise, research has shown that restricting dietary sources of zinc leads to a significant decrease in testosterone, while zinc supplementation increases it2 -- and even protects men from exercised-induced reductions in testosterone levels.3
ZMA (unnecessary). So when I researched how to increase testosterone, a supplement called ZMA kept popping up. It’s a blend of zinc, magnesium, and vitamin B6. The purported benefits of ZMA include better and deeper sleep which indirectly is supposed to increase testosterone. Zinc and magnesium are necessary minerals in testosterone production, so a mega-dose should be useful, right? Well, no. I bought some and took it during the duration of experiment. I should have done some more research before I made the purchase. While one study in 1998 showed increased strength among athletes taking ZMA, two recent studies (study 1, study 2) have shown that it has absolutely no effect on total or free testosterone levels. Crap. My advice, unless you have a zinc and magnesium deficiency, no need to waste your money on this.
Millions of American men use a prescription testosterone gel or injection to restore normal levels of the manly hormone. The ongoing pharmaceutical marketing blitz promises that treating "low T" this way can make men feel more alert, energetic, mentally sharp, and sexually functional. However, legitimate safety concerns linger. For example, some older men on testosterone could face higher cardiac risks.
×