Many studies showed the property of garlic in the proliferation and restoration effects on testosterone levels. It’s thought that this is due to a chemical in garlic known as diallyl sulfide. Diallyl-disulfide stimulates the synthesis of luteinizing hormone in the pituitary gland. Luteinizing hormone causes an increase in testosterone production in the Leydig cells of the testis.

Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.
Intracoronary artery infusion of testosterone causes significant coronary artery dilatation and not constriction as previously thought (Webb et al 1999). When degree of coronary obstruction is assessed by angiography, there is a direct relationship between degree of coronary artery narrowing and reduced testosterone levels (Phillips et al 1994). Men with low testosterone levels have been observed to have: premature atherosclerosis, increased visceral adipose tissue, hyperinsulinemia, and other risk factors for myocardial infarction (Phillips 2005). Insulin resistance has been shown to be associated with a decrease in Leydig cell secretion of testosterone (Pitteloud et al 2005). Muller and colleagues suggest that low endogenous total testosterone and SHBG levels increase the risk of metabolic syndrome in aging and aged men. They demonstrated that low levels of testosterone are related to lower insulin sensitivity and higher fasting insulin levels (Muller et al 2005). These authors speculate that testosterone might play a protective role in the development of metabolic syndrome, insulin resistance, diabetes mellitus and cardiovascular disease in aging men.
Opioid substances are in common use both licit and illicit. Opiates are potent analgesics but they are also highly addictive. They are frequently prescribed for both acute and chronic pain and when used chronically, often induce opiate dependence in the user. Pain clinics regularly use narcotic agents in many of their patients. Methadone, in particular, is regularly prescribed to opiate addicts who have entered a program aimed at reducing narcotic dosage and ultimately weaning the patient off it altogether. Most men who are on chronic high doses of an opiate become hypogonadal. This was first recognized in the 1970’s when heroin addicts were found to have suppressed levels of testosterone (Brambilla et al 1977). Also suppressed were LH and FSH pointing to a probable inhibition of GnRH release.
When you're under a lot of stress, your body releases high levels of the stress hormone cortisol. This hormone actually blocks the effects of testosterone,6 presumably because, from a biological standpoint, testosterone-associated behaviors (mating, competing, aggression) may have lowered your chances of survival in an emergency (hence, the "fight or flight" response is dominant, courtesy of cortisol).
We required all of our testosterone boosters to have magnesium, but gave preference to magnesium aspartate, citrate, lactate, and chloride. These forms have been found to be more easily absorbed than magnesium oxide and sulfate. (On the other hand, it didn’t count if the supplement had magnesium stearate, which is used to make pills not stick together.)
Saw palmetto: Uses, dosage, and side effects Saw palmetto is an extract from the berries of a type of palm tree. The berries have traditionally been used to ease urinary and reproductive problems. The extract is now used in herbal remedies to stabilize testosterone. Learn about its use, its effectiveness, the science behind the claims, and any side effects. Read now