I was reading in the university health news daily website that a study performed by researchers at the University of Texas M.D. Anderson Cancer Center found that men with prostate cancer who ate 3 tablespoons of milled or ground flax seeds each day had decreased prostate cancer cell proliferation compared to similar men who did not eat flax seeds. According to the American Cancer Society, men who supplement their diets with flax seed have lower PSA levels and slower growth of benign as well as cancerous prostate cells.

When many people think of someone with a high level of testosterone, they may picture a man loaded with strength, sexual prowess, and machismo. But while high-T has been correlated with all those things, it’s also been correlated with aggression, sexual misconduct, and violence. One of testosterone’s most common uses—as a performance-enhancing steroid—illustrates both sides of the hormone. Injecting steroids can be a quick way for athletes to dramatically improve performance, but the side effects can also be extreme, and can include excessive body hair growth, sexual dysfunction, and the hard-to-corral anger known as “roid rage.”

A 2010 study published in the journal Hormones and Behavior first suggested this when researchers evaluated the “dual-hormone hypothesis” clinically. (11) They discovered that when cortisol is elevated, testosterone responds by elevating as well but soon after bottoms out at a much lower level than before cortisol kicked in! That means you want to find ways to relieve stress to keep your testosterone levels up.

At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.


What you really need to worry about is the level of triglycerides in your blood. High triglycerides are a big warning sign for potential cardiovascular problems and disease. Again, to keep your triglycerides low while on a high cholesterol diet, take in a lot of veggies, limit your carb intake (especially sugars), supplement with omega 3 fish oil (more fat to make your cholesterol better – ironic right?), and exercise regularly.
Epidemiological evidence supports a link between testosterone and glucose metabolism. Studies in non-diabetic men have found an inverse correlation of total or free testosterone with glucose and insulin levels (Simon et al 1992; Haffner et al 1994) and studies show lower testosterone levels in patients with the metabolic syndrome (Laaksonen et al 2003; Muller et al 2005; Kupelian et al 2006) or diabetes (Barrett-Connor 1992; Andersson et al 1994; Rhoden et al 2005). A study of patients with type 2 diabetes using measurement of serum free testosterone by the gold standard method of equilibrium dialysis, found a 33% prevalence of biochemical hypogonadism (Dhindsa et al 2004). The Barnsley study demonstrated a high prevalence of clinical and biochemical hypogonadism with 19% having total testosterone levels below 8 nmol/l and a further 25% between 8–12 nmol/l (Kapoor, Aldred et al 2007). There are also a number longitudinal studies linking low serum testosterone levels to the future development of the metabolic syndrome (Laaksonen et al 2004) or type 2 diabetes (Haffner et al 1996; Tibblin et al 1996; Stellato et al 2000; Oh et al 2002; Laaksonen et al 2004), indicating a possible role of hypogonadism in the pathogenesis of type 2 diabetes in men. Alternatively, it has been postulated that obesity may be the common link between low testosterone levels and insulin resistance, diabetes and cardiovascular disease (Phillips et al 2003; Kapoor et al 2005). With regard to this hypothesis, study findings vary as to whether the association of testosterone with diabetes occurs independently of obesity (Haffner et al 1996; Laaksonen et al 2003; Rhoden et al 2005).
In order to discuss the biochemical diagnosis of hypogonadism it is necessary to outline the usual carriage of testosterone in the blood. Total serum testosterone consists of free testosterone (2%–3%), testosterone bound to sex hormone binding globulin (SHBG) (45%) and testosterone bound to other proteins (mainly albumin −50%) (Dunn et al 1981). Testosterone binds only loosely to albumin and so this testosterone as well as free testosterone is available to tissues and is termed bioavailable testosterone. Testosterone bound to SHBG is tightly bound and is biologically inactive. Bioavailable and free testosterone are known to correlate better than total testosterone with clinical sequelae of androgenization such as bone mineral density and muscle strength (Khosla et al 1998; Roy et al 2002). There is diurnal variation in serum testosterone levels with peak levels seen in the morning following sleep, which can be maintained into the seventh decade (Diver et al 2003). Samples should always be taken in the morning before 11 am to allow for standardization.

In accordance with sperm competition theory, testosterone levels are shown to increase as a response to previously neutral stimuli when conditioned to become sexual in male rats.[40] This reaction engages penile reflexes (such as erection and ejaculation) that aid in sperm competition when more than one male is present in mating encounters, allowing for more production of successful sperm and a higher chance of reproduction.


Looking for ingredients that work in the realm of supplements can be like finding a needle in a haystack. Testosterone boosters, like all dietary supplements, are not approved by the Food and Drug Administration prior to marketing. This lack of oversight dates back to the 1994 Dietary Supplement Health and Education Act (DSHEA), which stipulated that purveyors of supplements weren’t required to prove the safety of their products or the veracity of what’s on the labels to the FDA before listing them for sale. Often, there isn’t a lot of scientific backing behind an ingredient, or research has been done solely on animals, not humans.
There are supplements out there that promise to increase your libido while also upping your testosterone. There are over the counter testosterone supplements and prescription supplements. There are supplements that market themselves as T-boosters, while also touting themselves as an aphrodisiac. And then there are companies that claim to have developed a testosterone pill that contains the triumvirate of male-enhancing properties: T-boosting, libido-enhancing, and even fertility-increasing. These supplement makers sometimes throw in an additional claim of muscle gain as well.
Vitamin D supplementation may potentially boost testosterone levels, but further research is needed to determine if it really has an effect on the testosterone levels of young people and athletes. The truth is likely similar to zinc and magnesium — being in a deficient state causes your testosterone levels to drop below baseline, and supplementing it just takes you right back to baseline (but not any higher).
Sportsmen are permitted to use the boosters to trigger the mechanism of testosterone synthesis in the body. These products won a wide popularity among the sportsmen. The matter is that the supplements work by substantially enhancing sports performance, reviving strength, boosting endurance, coping with excessive stress levels, and decreasing time necessary for recovery after exhausting exercises.
Testosterone is everywhere playing multiple roles from intrauterine life to advanced age. Table 1, the contents of which are always undergoing change primarily because of newly observed associations, provides an overview of the bodily systemic functions and patho-physiological states in which testosterone finds itself implicated. In some of these states there is a clear physiological cause and effect relationship. In others, evidence of the physiological role is early or tenuous.

Decreased testosterone production in men with rheumatoid arthritis is a common finding (Stafford et al 2000), and it is now generally recognized that androgens have the capacity to suppress both the hormonal and cellular immune response and so act as one of the body’s natural anti-inflammatory agents (Cutolo et al 2002). This known anti-inflammatory action of testosterone has led to studying the effect of testosterone therapy in men with rheumatoid disease. Although not all studies have reported positive effects of testosterone treatment (Hall et al 1996), some studies do demonstrate an improvement in both clinical and chemical markers of the immune response (Cutolo et al 1991; Cutolo 2000). This observation would go along with more recent evidence that testosterone or its metabolites protects immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells (Page et al 2006).


The chemical synthesis of testosterone from cholesterol was achieved in August that year by Butenandt and Hanisch.[183] Only a week later, the Ciba group in Zurich, Leopold Ruzicka (1887–1976) and A. Wettstein, published their synthesis of testosterone.[184] These independent partial syntheses of testosterone from a cholesterol base earned both Butenandt and Ruzicka the joint 1939 Nobel Prize in Chemistry.[182][185] Testosterone was identified as 17β-hydroxyandrost-4-en-3-one (C19H28O2), a solid polycyclic alcohol with a hydroxyl group at the 17th carbon atom. This also made it obvious that additional modifications on the synthesized testosterone could be made, i.e., esterification and alkylation.
Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
Testosterone is an androgenic sex hormone produced by the testicles (and in smaller amounts in women’s ovaries), and is often associated with “manhood.” Primarily, this hormone plays a great role in men’s sexual and reproductive function. It also contributes to their muscle mass, hair growth, maintaining bone density, red blood cell production, and emotional health.
Because of inconclusive or conflicting results of testosterone treatment studies reported in the literature, Rabkin and colleagues (2004) undertook a comparison study among testosterone, the anti-depressant, fluoxetine, and placebo in eugonadal HIV positive men. They found that neither fluoxetine nor testosterone were different from placebo in reducing depression, but that testosterone did have a statistically significant effect in reducing fatigue. It is note-worthy that fatigue was reduced with testosterone treatment even though virtually all the men in the study had testosterone levels within the reference range.
“I'm a truck driver and for 13 hours a night I sit in my truck and I drive. Out of boredom, I'd stop and eat. That was all until Andro400 – ever since then my life has changed. I started out weighing 341 pounds, and since taking Andro400 I've dropped 85 pounds! There's no cravings – I actually don't even think about food anymore. One thing that Andro400 said on the radio ad is it attacks belly fat – well let me tell you it did – the 2nd month is where I saw a drastic change in the size of my stomach. I've lost 6 inches! I'm sleeping better. My knee pain went away. I've had some lower back issues and that went away, and I can only attribute that to Andro400. It's a Life Changer for me!”
The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication or have a medical condition.

Sportsmen are permitted to use the boosters to trigger the mechanism of testosterone synthesis in the body. These products won a wide popularity among the sportsmen. The matter is that the supplements work by substantially enhancing sports performance, reviving strength, boosting endurance, coping with excessive stress levels, and decreasing time necessary for recovery after exhausting exercises.
Bananas can be considered as energy-boosting snacks. You can eat it anytime of the day whenever you feel hungry or even while feeling bored. You would be unknowingly supplementing your body with some vitamins and minerals. A medium sized banana provides 32 milligrams of magnesium, along with potassium, vitamin C, fiber, and others. What more do you want from a light fruit!
   The International Journal of Sports Physiology and Performance recently studied tennis players, rugby teams, and wrestlers to find a link between testosterone and competitive outcome. They found that the difference between winning and losing was reflected in testosterone levels! The athletes' own natural testosterone prior to the game was directly related to the outcome after the game -- the higher the testosterone, the more frequently the athlete won.6
Herbalists have used _Trifolium pratense_, red clover, to treat menopausal symptoms like hot flashes. The mechanisms underlying these effects remain unknown. Testosterone decreases hot flashes in some postmenopausal women, so red clover may work in this way. A 2015 paper in the Avicenna Journal of Phytomedicine reviewed the literature testing this idea.
Get plenty of vitamin D. Vitamin D is a very important nutrient when it comes to testosterone production. This makes sense when you realize that vitamin D acts more like a steroidal hormone than it does like any typical vitamin. A 2010 study looked at the relationship between vitamin D supplementation and testosterone levels in men and found that those with higher levels of the vitamin also had higher levels of testosterone in their blood.[12] Vitamin D is made by human skin in response to intense summer sunshine, but a lack of going outdoors has triggered near epidemic levels of deficiency in American teenagers. Compounding this problem is that most northern states don't get enough sunshine to trigger vitamin D production for many months of the year.
You’re probably most familiar with testosterone as being the sex hormone responsible for defining “manhood.” And, yes, it does. However, proper levels of this key hormone are also necessary to stimulate sexual desire, increase libido, heighten arousal and ensure sexual satisfaction for both men and women. It’s also necessary to maintaining the following:

Testosterone levels generally peak during adolescence and early adulthood. As you get older, your testosterone level gradually declines — typically about 1 percent a year after age 30 or 40. It is important to determine in older men if a low testosterone level is simply due to the decline of normal aging or if it is due to a disease (hypogonadism).

×