Testosterone is a vital hormone for men, but just like estrogen in women, it goes down as you age. This is a natural process that has many drawbacks. In men, testosterone is responsible for hair growth, bone density, proper weight distribution, sex drive, muscle mass, red cell production, and so much more. But did you know that you can actually increase your testosterone levels as opposed to letting them dwindle?

One of the most important nutrients that can help boost testosterone levels is vitamin D3. In 2011, the results of a study published in the journal Hormone and Metabolic Research announced that vitamin D supplementation boosts testosterone naturally in overweight men by up to 30 percent. (12) This is pretty exciting because research has shown that vitamin D3 is also linked to helping to prevent and treat cancer! (13)
I know the experiment didn’t simply bring me back to my pre-August levels because of the fact that when I learned that the original test I took can sometimes overestimate your T levels, I took a more accurate test around four months after the start of the experiment (I’ve continued the lifestyle changes made during the experiment) and my total T had gone up again to 826.9 ng/dL.
Regardless of the method of testosterone treatment chosen, patients will require regular monitoring during the first year of treatment in order to monitor clinical response to testosterone, testosterone levels and adverse effects, including prostate cancer (see Table 2). It is recommended that patients should be reviewed at least every three months during this time. Once treatment has been established, less frequent review is appropriate but the care of the patient should be the responsibility of an appropriately trained specialist with sufficient experience of managing patients treated with testosterone.
Here’s a scary thought: You may be less of a man than your father was—at least hormonally. A study in the Journal of Clinical Endocrinology and Metabolism found that, on average, testosterone levels were higher in men of the same age in the ’80s than they were in the 2000s (due, researchers speculate, to higher rates of obesity and the wider use of medication these days).  
^ Jump up to: a b Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P, Calogeropoulou T, Castanas E, Gravanis A (2011). "Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis". PLoS Biol. 9 (4): e1001051. doi:10.1371/journal.pbio.1001051. PMC 3082517. PMID 21541365.

It's not enough just to increase the testosterone your body produces, because as we age, the testosterone we naturally produce is often bound by SHBG (sex hormone binding globulin) thus becoming unavailable for use in the body. It’s imperative that your testosterone remains unbound or “free” if you want to enjoy all the wonderful benefits testosterone provides.
"I am only 10 weeks into taking your product and I have lost 12 pounds and three inches from my waist. Normally I scoff at radio or TV ads promising results like this. But in this case, my results have far exceeded my expectations. My energy level has increased and my appetite has decreased! All this without any extra exercise program. Thanks from a very satisfied customer!"
Instead of turning to some drug that can only ameliorate symptoms and cause additional complications, I recommend using a natural saw palmetto supplement. Dr. Moerck says that there are about 100 clinical studies on the benefits of saw palmetto, one of them being a contributed to decreased prostate cancer risk. When choosing a saw palmetto supplement, you should be wary of the brand, as there are those that use an inactive form of the plant.
Dr. Anthony’s Notes: Correcting a common zinc deficiency can really help testosterone levels. This is why many supplement companies make testosterone boosting supplement stacks called “ZMA” (which stands for Zinc-Magnesium Aspartate) – which is essentially a combination of zinc and magnesium. Do note that LONG TERM high dose zinc supplementation is NOT a good idea (above 30-40mg). Taking too much zinc can lead to a copper deficiency (the two minerals compete for absorption), which causes problems of its own. Verdict: this is one of the natural testosterone supplements that work. Best Food Sources: Beef, lamb, oysters, pumpkin seeds, cashews, quinoa, turkey, chickpeas How To Take Zinc: 30mg once per day with food is ideal. And as we alluded to above in my “notes,” it's often best to take zinc WITH the next supplement on our list…
Hooper, D. R., Kraemer, W. J., Saenz, C., Schill, K. E., Focht, B. C., Volek, J. S. … Maresh, C. M. (2017, July). The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition [Abstract]. European Journal of Applied Physiology, 117(7), 1349–1357. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28470410

If you don;t mind i will probably use it as a testimonial in my tongkat ali extract article which I am not sure if you checked out. But something tells me you may be interested in it haha. I don’t know much about the medicinal tongkat ali you speak of, but I have a supplier from a Sumatra jungle in indonesia, Herbolab.com who’s product I know is 100% legit. Maybe not as powerful as medicinal but I do not know. He also tests every batch himself after the supper performs a performs chemical and microbiological analysis of every batch they product.
Prime Male is a highly effective testosterone supplement that is designed specifically for aging men. It is a carefully formulated supplement you’ve been looking for that can catapult your libido into overdrive, improve bedroom performance, spike energy levels to where they were in your 20’s, harden your body with quality muscle mass, melt unnecessary body fat, and more. The high quality scientifically backed ingredients are the secret to this powerful testosterone booster.
Keep in mind that you can use virtually any type of equipment you want for this – an elliptical machine, a treadmill, swimming, even sprinting outdoors (although you will need to do this very carefully to avoid injury) -- as long as you're pushing yourself as hard as you can for 30 seconds. But do be sure to stretch properly and start slowly to avoid injury. Start with two or three repetitions and work your way up, don't expect to do all eight repetitions the first time you try this, especially if you are out of shape.
Keep in mind that you can use virtually any type of equipment you want for this – an elliptical machine, a treadmill, swimming, even sprinting outdoors (although you will need to do this very carefully to avoid injury) -- as long as you're pushing yourself as hard as you can for 30 seconds. But do be sure to stretch properly and start slowly to avoid injury. Start with two or three repetitions and work your way up, don't expect to do all eight repetitions the first time you try this, especially if you are out of shape.
The mechanism of age related decreases in serum testosterone levels has also been the subject of investigation. Metabolic clearance declines with age but this effect is less pronounced than a reduction in testosterone production, so the overall effect is to reduce serum testosterone levels. Gonadotrophin levels rise during aging (Feldman et al 2002) and testicular secretory responses to recombinant human chorionic gonadotrophin (hCG) are reduced (Mulligan et al 1999, 2001). This implies that the reduced production may be caused by primary testicular failure but in fact these changes are not adequate to fully explain the fall in testosterone levels. There are changes in the lutenising hormone (LH) production which consist of decreased LH pulse frequency and amplitude, (Veldhuis et al 1992; Pincus et al 1997) although pituitary production of LH in response to pharmacological stimulation with exogenous GnRH analogues is preserved (Mulligan et al 1999). It therefore seems likely that there are changes in endogenous production of GnRH which underlie the changes in LH secretion and have a role in the age related decline in testosterone. Thus the decreases in testosterone levels with aging seem to reflect changes at all levels of the hypothalamic-pituitary-testicular axis. With advancing age there is also a reduction in androgen receptor concentration in some target tissues and this may contribute to the clinical syndrome of LOH (Ono et al 1988; Gallon et al 1989).
This website is not intended to provide medical advice or to take the place of medical advice and treatment from your personal physician. Visitors are advised to consult their own doctors or other qualified health professional regarding the treatment of medical conditions. The author shall not be held liable or responsible for any misunderstanding or misuse of the information contained on this site or for any loss, damage, or injury caused, or alleged to be caused, directly or indirectly by any treatment, action, or application of any food or food source discussed in this website. The U.S. Food and Drug Administration have not evaluated the statements on this website. The information is not intended to diagnose, treat, cure, or prevent any disease. Any celebrities shown or mentioned on this page do not endorse this product.
The reasons for considering such therapy become evident from the many associations, indicated above, that reduced testosterone has with a variety of both physiological functions (bone metabolism, muscle mass, cognitive function, libido, erectile function) and pathophysiological states (metabolic syndrome, diabetes mellitus, obesity, insulin resistance, autoimmune disease). Although a definitive long-term, large scale placebo-controlled double-blind study of testosterone therapy in the aging male has not yet been carried out, multiple shorter-term trials have suggested improvement by testosterone with a resultant enhancement of muscle mass, bone density, libido, erectile function, mood, motivation and general sense of well-being.
Puberty occurs when there is an “awakening” of the hypothalamic-pituitary axis. The hypothalamus increases its secretion of gonadotropin releasing hormone (GnRH) which in turn stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). This leads to a significant increase in the production of testicular testosterone and the induction of the well-known secondary sex characteristics associated with puberty: growth spurt, increased libido, increased erectile function, acne, increased body hair, increased muscle mass, deepening of the voice, spermatogenesis, gynecomastia (usually transient).
Epidemiological evidence supports a link between testosterone and glucose metabolism. Studies in non-diabetic men have found an inverse correlation of total or free testosterone with glucose and insulin levels (Simon et al 1992; Haffner et al 1994) and studies show lower testosterone levels in patients with the metabolic syndrome (Laaksonen et al 2003; Muller et al 2005; Kupelian et al 2006) or diabetes (Barrett-Connor 1992; Andersson et al 1994; Rhoden et al 2005). A study of patients with type 2 diabetes using measurement of serum free testosterone by the gold standard method of equilibrium dialysis, found a 33% prevalence of biochemical hypogonadism (Dhindsa et al 2004). The Barnsley study demonstrated a high prevalence of clinical and biochemical hypogonadism with 19% having total testosterone levels below 8 nmol/l and a further 25% between 8–12 nmol/l (Kapoor, Aldred et al 2007). There are also a number longitudinal studies linking low serum testosterone levels to the future development of the metabolic syndrome (Laaksonen et al 2004) or type 2 diabetes (Haffner et al 1996; Tibblin et al 1996; Stellato et al 2000; Oh et al 2002; Laaksonen et al 2004), indicating a possible role of hypogonadism in the pathogenesis of type 2 diabetes in men. Alternatively, it has been postulated that obesity may be the common link between low testosterone levels and insulin resistance, diabetes and cardiovascular disease (Phillips et al 2003; Kapoor et al 2005). With regard to this hypothesis, study findings vary as to whether the association of testosterone with diabetes occurs independently of obesity (Haffner et al 1996; Laaksonen et al 2003; Rhoden et al 2005).
Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
Opioid substances are in common use both licit and illicit. Opiates are potent analgesics but they are also highly addictive. They are frequently prescribed for both acute and chronic pain and when used chronically, often induce opiate dependence in the user. Pain clinics regularly use narcotic agents in many of their patients. Methadone, in particular, is regularly prescribed to opiate addicts who have entered a program aimed at reducing narcotic dosage and ultimately weaning the patient off it altogether. Most men who are on chronic high doses of an opiate become hypogonadal. This was first recognized in the 1970’s when heroin addicts were found to have suppressed levels of testosterone (Brambilla et al 1977). Also suppressed were LH and FSH pointing to a probable inhibition of GnRH release.
Testosterone Max is another product that we chose to rank amongst the elite because of its ability to cause the body to produce testosterone on its own in a completely natural way. Almost all of the requirements are once again met, in terms of high quality ingredients, synergy, sufficient amounts, clinical proof (for the most part), and the absence of a proprietary blend.
February 22, 2018 - Since our last review, the manufacturers of two of our top picks have gone out of business, and some new testosterone boosters have entered the arena. We’ve updated this review to evaluate the current field of testosterone supplements, as well as beef up analysis on what kind of results you can expect from t-boosters. Our only current top pick, Beast Sports Nutrition, is a new player in the industry that contains all four of the ingredients with studies showing a positive effect on testosterone.
Hooper, D. R., Kraemer, W. J., Saenz, C., Schill, K. E., Focht, B. C., Volek, J. S. … Maresh, C. M. (2017, July). The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition [Abstract]. European Journal of Applied Physiology, 117(7), 1349–1357. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28470410
The converse is also true; there is an increased incidence of rheumatic/autoimmune disease in men with hypogonadism. Jimenez-Balderas et al (2001) carried out neuroendocrine, genetic and rheumatologic investigations in hypogonadal men. Of the 13 hypogonadal patients, 8 (61%) had rheumatic autoimmune disease (ankylosing spondylitis, systemic lupus erythemetosus, rheumatoid arthritis, dermatomyositis). There is a low frequency of those diseases (0.83%) in the general population.
Studies conducted in rats have indicated that their degree of sexual arousal is sensitive to reductions in testosterone. When testosterone-deprived rats were given medium levels of testosterone, their sexual behaviors (copulation, partner preference, etc.) resumed, but not when given low amounts of the same hormone. Therefore, these mammals may provide a model for studying clinical populations among humans suffering from sexual arousal deficits such as hypoactive sexual desire disorder.[37]

Since then there have been many publications documenting suppressed testosterone and gonadotropins (Daniell 2006) in men using opioid medications whether these agents were administrated orally (Daniell 2002) or intrathecally (Finch et al 2000). Not only do opioids act centrally by suppressing GnRH, they also act directly on the testes inhibiting the release of testosterone by Leydig cells during stimulation with human chorionic gonadotropin (Purohit et al 1978). Although the large majority of men (and women) receiving opioids do develop hypogonadism, about 15 percent also develop central hypocorticism and 15 percent develop growth hormone deficiency (Abs et al 2000).
The use of anabolic steroids (manufactured androgenic hormones) shuts down the release of luteinising hormone and follicle stimulating hormone secretion from the pituitary gland, which in turn decreases the amount of testosterone and sperm produced within the testes. In men, prolonged exposure to anabolic steroids results in infertility, a decreased sex drive, shrinking of the testes and breast development. Liver damage may result from its prolonged attempts to detoxify the anabolic steroids. Behavioural changes (such as increased irritability) may also be observed. Undesirable reactions also occur in women who take anabolic steroids regularly, as a high concentration of testosterone, either natural or manufactured, can cause masculinisation (virilisation) of women.
×