A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
The confusion is understandable, as one in-vitro study noted that high doses of zinc blocked the enzyme 5-a reductase inside test-tubes. But the studies that don’t see much daylight actually show that oral zinc supplementation on actual living, breathing, humans is able to significantly boost the production of dihydrotestosterone, and it does so even when there’s no deficiency in the mineral.

Robert Clark aka "The Troglodyte" is a 39 year old father of 3, Author, Fitness Trainer, Nutritional Researcher, Obstacle Course Racer, Avid Trail Runner and CrossFit Warrior. He is dedicated to helping others achieve their fitness goals. His extensive work in the field of natural testosterone elevation, inspired the creation of Alpha Wolf Nutrition where he serves as the Lead Product Researcher.
A: Testosterone production declines naturally with age. Low testosterone, or testosterone deficiency (TD), may result from disease or damage to the hypothalamus, pituitary gland, or testicles that inhibits hormone secretion and testosterone production. Treatment involves hormone replacement therapy. The method of delivery is determined by age and duration of deficiency. Oral testosterone, Testred (methyltestosterone), is associated with liver toxicity and liver tumors and so is prescribed sparingly. Transdermal delivery with a testosterone patch is becoming the most common method of treatment for testosterone deficiency in adults. A patch is worn, either on the scrotum or elsewhere on the body, and testosterone is released through the skin at controlled intervals. Patches are typically worn for 12 or 24 hours and can be worn during exercise, bathing, and strenuous activity. Two transdermal patches that are available are Androderm (nonscrotal) and Testoderm (scrotal). The Androderm patch is applied to the abdomen, lower back, thigh, or upper arm and should be applied at the same time every evening between 8 p.m. and midnight. If the patch falls off before noon, replace it with a fresh patch until it is time to reapply a new patch that evening. If the patch falls off after noon, do not replace it until you reapply a new patch that evening. The most common side effects associated with transdermal patch therapy include itching, discomfort, and irritation at the site of application. Some men may experience fluid retention, acne, and temporary abnormal breast development (gynecosmastia). AndroGel and Testim are transdermal gels that are applied once daily to the clean dry skin of the upper arms or abdomen. When used properly, these gels deliver testosterone for 24 hours. The gel must be allowed to dry on the skin before dressing and must be applied at least 6 hours before showering or swimming. Gels cannot be applied to the genitals. AndroGel is available in a metered-dose pump, which allows physicians to adjust the dosage of the medication. Side effects of transdermal gels include adverse reactions at the site of application, acne, headache, and hair loss (alopecia). For more specific information on treatments for low testosterone, consult with your doctor or pharmacist for guidance based on current health condition. Kimberly Hotz, PharmD

Pine Pollen is an androgen, meaning in theory it can raise testosterone levels – effectively making it a naturally derived source of testosterone. Read more about this on the links below. But like I said I started taking it for a few weeks and did notice a bit more ‘up and go’ so to speak, but it did only last a few weeks. I have tried cycling it but haven’t noticed the same effects as I had when I initially started with it. I’m still experimenting and will keep this page updated. Therefore I recommend doing your own research.
Dixon Troyer is the President of Operations at 3 Elements Lifestyle, LLC., a Fitness and Weight Loss company that specializes in YOU! With more than 15 years of gym and club experience, owning, operating and managing clubs of all sizes, Dixon lectures, delivers seminars and workshops on the practical skills required to successfully help you with your health and fitness goals. Dixon also helps you build the teamwork, management, and training necessary to open your own fitness center.
It sounds like a creature from Jurassic World, but this plant is worth learning to pronounce, especially if you haven’t had great sex since dinosaurs roamed the earth. A 2012 study showed that consuming six grams of tribulus root for 60 days improved erections and frequency of sex in men with low sperm counts. It also reduced sexual fatigue. Furthermore, their testosterone jumped by a whopping 16%. “Trib,” as it’s called, is thorny and bitter, so look to a supplement for consuming it. Epiq’s Quad Test includes Tribulus terrestris. (epiqresults.com)
ZMA (unnecessary). So when I researched how to increase testosterone, a supplement called ZMA kept popping up. It’s a blend of zinc, magnesium, and vitamin B6. The purported benefits of ZMA include better and deeper sleep which indirectly is supposed to increase testosterone. Zinc and magnesium are necessary minerals in testosterone production, so a mega-dose should be useful, right? Well, no. I bought some and took it during the duration of experiment. I should have done some more research before I made the purchase. While one study in 1998 showed increased strength among athletes taking ZMA, two recent studies (study 1, study 2) have shown that it has absolutely no effect on total or free testosterone levels. Crap. My advice, unless you have a zinc and magnesium deficiency, no need to waste your money on this.
Spinach/Spring Salad Mix. This was the base of my salad. I used Organic Girl Greens from Whole Foods. Yeah, I know. The base of my Man Salad came from a company called Organic Girl. Spinach and other leafy green vegetables contain minerals like magnesium and zinc, which have been shown to aid in testosterone production (study on magnesium, and another; study on zinc)
Some of the effects of testosterone treatment are well recognised and it seems clear that testosterone treatment for aging hypogonadal men can be expected to increase lean body mass, decrease visceral fat mass, increase bone mineral density and decrease total cholesterol. Beneficial effects have been seen in many trials on other parameters such as glycemic control in diabetes, erectile dysfunction, cardiovascular risk factors, angina, mood and cognition. These potentially important effects require confirmation in larger clinical trials. Indeed, it is apparent that longer duration randomized controlled trials of testosterone treatment in large numbers of men are needed to confirm the effects of testosterone on many aspects of aging male health including cardiovascular health, psychiatric health, prostate cancer and functional capacity. In the absence of such studies, it is necessary to balance risk and benefit on the best available data. At the present time the data supports the treatment of hypogonadal men with testosterone to normalize testosterone levels and improve symptoms. Most men with hypogonadism do not have a contraindication to treatment, but it is important to monitor for adverse consequences including prostate complications and polycythemia.
This supplier is located in north sumatra (but they ship from Amazon via the U.S). They harvest the tongkat ali from the sumatra jungle and use roots of trees >10 years of age. I know this supplier is the best because he used to purchase from Tongkatali.org, which if you search Google you will find is the most reputable stuff. But he tests every batch before sending it out and became unhappy with the quality of their product. He now purchases from a new supplier who get tongkat ali extract from the same jungle, with the same extraction process, but who performs chemical and microbiological analysis of every batch they produce, which brings me peace of mind.
In fact, high cortisol deals a crushing blow to testosterone in two ways. During, long-lasting stress, high amounts of cortisol release very often and have a direct negative influence on T levels. Thus, cortisol inhibits testosterone synthesis in the testes and hypothalamus. In addition, the production of cortisol is impossible without cholesterol. But testosterone synthesis also demands cholesterol. Since during stress cholesterol is first of all used for making cortisol, T levels simply plummet.
Here’s one proof: in a number of British rivers, 50 percent of male fish were found to produce eggs in their testes. According to EurekAlert,3 EDCs have been entering rivers and other waterways through sewage systems for years, altering the biology of male fish. It was also found that fish species affected by EDCs had 76 percent reduction in their reproductive function.
First, it’s important to note that these tactics and practices to boost testosterone naturally probably won’t work with men who have hypoandrogenism. If the glands and cells responsible for producing testosterone are damaged or defective, no amount of eggs or sleep will help you raise testosterone levels. You’ll likely need to use testosterone replacement therapy to get your T levels to a healthy place.
A: According to the package insert, there are several longer-term side effects that have occurred with testosterone therapy. Testosterone can stimulate the growth of cancerous tissue. Prostate cancer or enlargement of the prostate can develop during prolonged therapy with testosterone, and these conditions are more likely to occur in elderly men. In patients receiving testosterone therapy, tests for prostate cancer should be performed as is current practice. Androgen therapy, such as testosterone, can cause a loss of blood sugar control in patients with diabetes. Close monitoring of blood glucose is recommended. Male patients can experience feminization during prolonged therapy with testosterone. The side effects of feminization include breast soreness and enlargement. These side effects are generally reversible when treatment is stopped. Hair loss resembling male pattern baldness has also occurred. Sexual side effects including decreased ejaculatory volume and low sperm counts have occurred in patients receiving long-term therapy or excessive doses. For more information, please consult with your health care provider and visit //www.everydayhealth.com/drugs/testosterone. Michelle McDermott, PharmD
Pregnant or nursing women who are exposed to EDCs can transfer these chemicals to their child. Exposure to EDCs during pregnancy affects the development of male fetuses. Fewer boys have been born in the United States and Japan in the last three decades. The more women are exposed to these hormone-disrupting substances, the greater the chance that their sons will have smaller genitals and incomplete testicular descent, leading to poor reproductive health in the long term. EDCs are also a threat to male fertility, as they contribute to testicular cancer and lower sperm count. All of these birth defects and abnormalities, collectively referred to as Testicular Dysgenesis Syndrome (TDS), are linked to the impaired production of testosterone.5
Acne and Allergic Reactions: The testosterone is universally regarded as one of the triggering factors for acne. It stimulates the activity of oil glands making the skin more oily and vulnerable to acne. This body hormone might also cause allergic reactions, such as hives, rash, difficulty breathing, itching, chest tightness, and big swelling of the facial parts.

"A lot of the symptoms are mirrored by other medical problems," Hedges says. "And for a long time, we were not attributing them to low testosterone, but to diabetes, depression, high blood pressure, and coronary artery disease. But awareness and appreciation of low testosterone has risen. We recognize now that low testosterone may be at the root of problems."
×