I highly recommend using a great essential amino acid mix post-exercise in order to boost testosterone.  These essential amino acids and especially the concentrated branched chain amino acids leucine, isoleucine and valine stimulate muscle protein synthesis.  Getting these amino acids in the post-workout window dramatically boosts testosterone production (14).  I like using our Amino Strong and will often recommend a scoop pre-workout and post-workout for the best muscle building, testosterone boosting benefits.
6., 7. JK, Udani, George AA, Musthapa M, Pakdaman MN, and Abas A. "Effects of a Proprietary Freeze-Dried Water Extract of Eurycoma Longifolia (Physta) and Polygonum minus on Sexual Performance and Well-Being in Men: A Randomized, Double-Blind, Placebo-Controlled Study." National Center for Biotechnology Information. U.S. National Library of Medicine, 12 Jan. 2014.

Drugs.com provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include IBM Watson Micromedex (updated 1 Mar 2019), Cerner Multum™ (updated 1 Mar 2019), Wolters Kluwer™ (updated 28 Feb 2019) and others. Refer to our editorial policy for content sources and attributions.
Examine.com is intended to be used for educational and information purposes only. Examine.com and its Editors do not advocate nutritional supplementation over proper medical advice or treatment and this sentiment will never be expressed through pages hosted under Examine.com. If using any pharmaceuticals or drugs given to you by a doctor or received with a prescription, you must consult with the doctor in question or an equally qualified Health Care Professional prior to using any nutritional supplementation. If undergoing medical therapies, then consult with your respective Therapist or Health Care Professional about possible interactions between your Treatment, any Pharmaceuticals or Drugs being given, and possible nutritional supplements or practices hosted on Examine.com.
Because of inconclusive or conflicting results of testosterone treatment studies reported in the literature, Rabkin and colleagues (2004) undertook a comparison study among testosterone, the anti-depressant, fluoxetine, and placebo in eugonadal HIV positive men. They found that neither fluoxetine nor testosterone were different from placebo in reducing depression, but that testosterone did have a statistically significant effect in reducing fatigue. It is note-worthy that fatigue was reduced with testosterone treatment even though virtually all the men in the study had testosterone levels within the reference range.
It goes without saying that a healthy diet, quality sleep, productive lifestyle, and regular exercises can contribute to the overall increase of testosterone. However, it is also true that these activities are very often not enough for guys who have the problems with naturally low testosterone levels. This situation also includes people who want to boost their existing testosterone levels.
If you remember Popeye the Sailor Man, then your childhood was probably awesome. You might remember that Popeye takes spinach and he becomes miraculously powerful within seconds. Although it's not an accurate depiction of spinach's abilities, it is safe to say that it shouldn't be avoided in a man's diet. Spinach may not be excessively rich in zinc yet it holds many other vitamins and minerals.
There have been case reports of development of prostate cancer in patients during treatment with testosterone, including one case series of twenty patients (Gaylis et al 2005). It is not known whether this reflects an increase in incidence, as prostate cancer is very common and because the monitoring for cancer in patients treated with testosterone is greater. Randomized controlled trials of testosterone treatment have found a low incidence of prostate cancer and they do not provide evidence of a link between testosterone treatment and the development of prostate cancer (Rhoden and Morgentaler 2004). More large scale clinical trials of longer durations of testosterone replacement are required to confirm that testosterone treatment does not cause prostate cancer. Overall, it is not known whether testosterone treatment of aging males with hypogonadism increases the risk of prostate cancer, but monitoring for the condition is clearly vital. This should take the form of PSA blood test and rectal examination every three months for the first year of treatment and yearly thereafter (Nieschlag et al 2005). Age adjusted PSA reference ranges should be used to identify men who require further assessment. The concept of PSA velocity is also important and refers to the rate of increase in PSA per year. Patients with abnormal rectal examination suggestive of prostate cancer, PSA above the age specific reference range or a PSA velocity greater than 0.75 ng/ml/yr should be referred to a urologist for consideration of prostate biopsy.
Low testosterone levels may contribute to decreased sex drive, erectile dysfunction, fragile bones, and other health issues. Having low testosterone levels may also indicate an underlying medical condition. See your doctor if you suspect you have low testosterone. A simple blood test is all it takes to check if your testosterone falls within the normal range.
Puberty occurs when there is an “awakening” of the hypothalamic-pituitary axis. The hypothalamus increases its secretion of gonadotropin releasing hormone (GnRH) which in turn stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). This leads to a significant increase in the production of testicular testosterone and the induction of the well-known secondary sex characteristics associated with puberty: growth spurt, increased libido, increased erectile function, acne, increased body hair, increased muscle mass, deepening of the voice, spermatogenesis, gynecomastia (usually transient).
Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[151] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][151][157][158] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[159] skin, hair follicles, and brain[160] and aromatase is highly expressed in adipose tissue, bone, and the brain.[161][162] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[152] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[163] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[164]
Both men and women with Alzheimer’s Disease were found to have an increased concentration of SHBG and decreased free androgen index when compared with controls (Paoletti et al 2004). In a prospective study of 574 men whose baseline age span was 32–87 years and who were followed for a mean of 19.1 years (range, 4–37), the risk of developing Alzheimers’ Disease decreased 26 percent for each 10 unit increase in free testosterone index. The authors concluded that testosterone may be important for the prevention and treatment of AD (Moffat et al 2004).
Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.
Consider supplementing with D-aspartic acid (DAA). DAA is an amino acid found in glandular tissues and it's thought to increase the activity of testosterone production and impact other hormones in the body. A 2009 study found that men who supplemented with 3,120 mg of DAA daily for 12 days experienced an increase in testosterone by an average of 42%.[14] The results showed that DAA may have a key role in the regulation of the release and synthesis of testosterone in men, although it's likely to have similar effects on teenage males also. Another form of aspartic acid is made in the body and found in a variety of foods, but DAA is not as commonly found in food sources.
The prevalence of biochemical testosterone deficiency increases with age. This is partly due to decreasing testosterone levels associated with illness or debility but there is also convincing epidemiological data to show that serum free and total testosterone levels also fall with normal aging (Harman et al 2001; Feldman et al 2002). The symptoms of aging include tiredness, lack of energy, reduced strength, frailty, loss of libido, decreased sexual performance depression and mood change. Men with hypogonadism experience similar symptoms. This raises the question of whether some symptoms of aging could be due to relative androgen deficiency. On the other hand, similarities between normal aging and the symptoms of mild androgen deficiency make the clinical diagnosis of hypogonadism in aging men more challenging.

Ensure that you get adequate restful sleep each night. Sleeping less than the recommended 6 to 8 hours per night increases stress hormones, which lowers testosterone production. Additionally, learn to manage stress levels in healthy ways to naturally increase testosterone. Hormone replacement therapy may be required for some men with low testosterone levels. Consult your physician about treatment options.


Zaima, N., Kinoshita, S., Hieda, N., Kugo, H., Narisawa, K., Yamamoto, A., ... Moriyama, T. (2016, September). Effect of dietary fish oil on mouse testosterone level and the distribution of eicosapentaenoic acid-containing phosphatidylcholine in testicular interstitium. Biochemistry and Biophysics Reports, 7, 259–265. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613343/
Testosterone fluctuates according to age and life circumstance, often plummeting at the onset of parenthood, and spiking (for some) during moments of triumph. Romantic relationships, too, can impact a person’s testosterone production; though the reasons are still not fully understood, entering a relationship tends to increase women’s testosterone levels, while decreasing men’s. Since males produce significantly more testosterone than females—about 20 times more each day—females can be more sensitive to these fluctuations. High levels of testosterone, particularly in men, have been correlated with a greater likelihood of getting divorced or engaging in extramarital affairs, though a causal link has not been established.
Many studies showed the property of garlic in the proliferation and restoration effects on testosterone levels. It’s thought that this is due to a chemical in garlic known as diallyl sulfide. Diallyl-disulfide stimulates the synthesis of luteinizing hormone in the pituitary gland. Luteinizing hormone causes an increase in testosterone production in the Leydig cells of the testis.
A study out of the University of Mary Hardin-Baylor in Belton, Texas, examined the effects of fenugreek supplementation on strength and body composition in resistance-trained men. Researchers found that while both the placebo and fenugreek groups significantly increased their strength during the first four weeks, only the fenugreek group saw significant increases in strength after eight weeks of training and supplementation.[5]
Cognitive abilities differ between males and females and these differences are present from childhood. In broad terms, girls have stronger verbal skills than boys who tend to have stronger skills related to spatial ability (Linn and Petersen 1985). It is thought that the actions of sex hormones have a role in these differences. Reviewing different cognitive strengths of male versus female humans is not within the scope of this article but the idea that cognition could be altered by testosterone deserves attention.
Fenugreek is often found in Indian, Turkish, and Persian cuisine. Multiple studies have found it to improve testosterone levels, and in particular, sexual performance. Scientists at Babu Banarasi Das University and King George’s Medical University in India have found that fenugreek improved testosterone levels. Testosterone levels increased for 90% of the volunteers, sperm morphology (the size and shape of sperm) improved for 14.6%, and more than 50% of volunteers experienced improvements in mental alertness, mood, and libido.
So, I can definitely recommend these amazing for anyone who wants to last longer in bed and for anyone who wants to improve their size. Don’t hesitate to use that sample offer of , and make sure you take it because now I’m FINALLY satisfied. On top of my hubby’s erections being on point, he is now way bigger than before and lasts way longer than ever before when we use it.
As we age, the body undergoes multiple degenerative changes at multiple sites and in multiple systems. The changes of aging are inevitable and inexorable and represent the march toward ultimate death. We are mortal beings whose destiny it is to die. As we come to learn about the processes of life we can better prepare ourselves for the finality of death and on the way perhaps retard the degenerative process, or repair it (for however long we may enjoy this repair), or substitute chemical compounds that our bodies once produced in abundance, an abundance which fades with the advance of age.
Maybe you are a vegetarian and tend to avoid shellfish or meat. Then you better try beans. Beans can, in fact, help you to boost your vitamin D and zinc in your body. Adding beans to your daily meal will help you increase testosterone levels. Another good thing about beans is that they are cheap and easy to prepare. There are wide varieties of beans available in the market.
Also, due to the intake of these synthetic substances, men start behaving in a very excited way, as well as demonstrate high levels of aggression and even violence. So, the men’s behavior may be antisocial. In addition, the men will experience breast enlargement and testicular shrinkage. The other adverse effects include hypertension, tumor growth, heart attacks and strokes, as well as development of liver disorders. It’s obvious that the numerous dangers of steroid use far outweigh a few benefits which they bring.
A number of epidemiological studies have found that bone mineral density in the aging male population is positively associated with endogenous androgen levels (Murphy et al 1993; Ongphiphadhanakul et al 1995; Rucker et al 2004). Testosterone levels in young men have been shown to correlate with bone size, indicating a role in determination of peak bone mass and protection from future osteoporosis (Lorentzon et al 2005). Male hypogonadism has been shown to be a risk factor for hip fracture (Jackson et al 1992) and a recent study showed a high prevalence of hypogonadism in a group of male patients with average age 75 years presenting with minimal trauma fractures compared to stroke victims who acted as controls (Leifke et al 2005). Estrogen is a well known determinant of bone density in women and some investigators have found serum estrogen to be a strong determinant of male bone density (Khosla et al 1998; Khosla et al 2001). Serum estrogen was also found to correlate better than testosterone with peak bone mass (Khosla et al 2001) but this is in contradiction of a more recent study showing a negative correlation of estrogen with peak bone size (Lorentzon et al 2005). Men with aromatase deficiency (Carani et al 1997) or defunctioning estrogen receptor mutations (Smith et al 1994) have been found to have abnormally low bone density despite normal or high testosterone levels which further emphasizes the important influence of estrogen on male bone density.

Sharma, R., Oni, O. A., Gupta, K., Chen, G., Sharma, M., Dawn, B., … & Barua, R. S. (2015, August 6). Normalization of testosterone level is associated with reduced incidence of myocardial infarction. European Heart Journal, 36(40), 2706-2715. Retrieved from https://academic.oup.com/eurheartj/article/36/40/2706/2293361/Normalization-of-testosterone-level-is-associated
×